Skip to main content

Cross Species Proteomics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 604))

Abstract

Proteomics has advanced in leaps and bounds over the past couple of decades. However, the continuing dependency of mass spectrometry-based protein identification on the searching of spectra against protein sequence databases limits many proteomics experiments. If there is no sequenced genome for a given species, then cross species proteomics is required, attempting to identify proteins across the species boundary, typically using the sequenced genome of a closely related species. Unlike sequence searching for homologues, the proteomics equivalent is confounded by small differences in amino acid sequences, leading to large differences in peptide masses; this renders mass matching of peptides and their product ions difficult. Therefore, the phylogenetic distance between the two species and the attendant level of conservation between the homologous proteins play a huge part in determining the extent of protein identification that is possible across the species boundary. In this chapter, we review the cross species challenge itself, as well as various approaches taken to deal with it and the success met with in past studies. This is followed by recommendations of best practice and suggestions to researchers facing this challenge as well as a final section predicting developments, which may help improve cross species proteomics in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

PMF:

Peptide mass fingerprint

ESI:

Electrospray ionisation

MALDI:

Matrix assisted laser desorption/ionisation

MS:

Mass spectrometry

m/z :

Mass to charge

PTM:

Post translational modification

References

  1. Mardis E. R. (2008) The Impact of Next Generation Sequencing Technology on Genetics, Trends in Genetics, 24: 133-141

    CAS  PubMed  Google Scholar 

  2. May R. M. (1990) How Many Species? Philoso­phical Transactions of the Royal Society of London. Series B, Biological Sciences, 330: 293-304

    Article  Google Scholar 

  3. Ansong C., Purvine S. O., Adkins J. N., Lipton M. S., Smith R. D. (2008) Proteo­genomics: Needs and Roles to be Filled by Proteomics in Genome Annotation, Briefings in Functional Genomics and Proteomics, 7: 50-62

    Article  CAS  PubMed  Google Scholar 

  4. Wilkins, M. R., Williams K. L. (1997) Cross-Species Protein Identification using Amino Acid Composition, Peptide Mass Fingerprinting, Isoelectric Point and Molecular Mass: A Theoretical Evaluation, Journal of Theoretical Biology, 186: 7-15

    Article  CAS  PubMed  Google Scholar 

  5. Lester P. J., Hubbard S. J. (2002) Comparative Bioinformatic Analysis of Complete Proteomes and Protein Parameters for Cross-Species Identification in Proteomics, Proteomics, 2: 1392-1405

    Article  CAS  PubMed  Google Scholar 

  6. Cordwell S. J., Wilkins M. R., Cerpa-Poljak A., Gooley A. A., Duncan M., Williams K. L., Humphery-Smith I. (1995) Cross-Species Identification of Proteins Seperated by Two-Dimensional Gel Electrophoresis using Matrix-Assisted Laser Desorption/Time-of-Flight Mass Spectrometry and Amino Acid Composition, Electrophoresis, 16: 438-443

    Article  CAS  PubMed  Google Scholar 

  7. Cordwell S. J., Basseal D. J., Humphery-Smith I. (1997) Proteome Analysis of Spiroplasma melliferum (A56) and Protein Characterisation Across Species Boundaries, Electrophoresis, 18: 1335-1346

    Article  CAS  PubMed  Google Scholar 

  8. Wasinger V. C., Cordwell S. J., Cerpa-Poljak A., Yan J. X., Gooley A. A., Wilkins M. R., Duncan M. W., Harris R., Williams K. L., Humphery-Smith I. (1995) Progress with Gene-Product Mapping of the Mollicutes: Mycoplasma Genitalium, Electrophoresis, 16: 1090-1094

    Article  CAS  PubMed  Google Scholar 

  9. Cordwell S. J., Humphery-Smith I. (1997) Evaluation of Algorithms used for Cross-Species Proteome Characterisation, Electrophoresis, 18: 1410-1417

    Article  CAS  PubMed  Google Scholar 

  10. Wilkins M. R., Gasteiger E., Tonella L., Ou K., Tyler M., Sanchez J. C., Gooley A. A., Walsh B. J., Bairoch A., Appel R. D., Williams K. L., Hochstrasser D. F. (1998) Protein Identification with N and C Terminal Sequence Tags in Proteome Projects, Journal of Molecular Biology, 278: 599-608

    Article  CAS  PubMed  Google Scholar 

  11. Wilikins M. R., Gasteiger E., Wheeler C. H., Lindskog I., Sanchez J. C., Bairoch A., Appel R. D., Dunn M. J., Hochstrasser D. F. (1998) Multiple Parameter Cross-Species Protein Identification using Multiident - A World-Wide Web Acessible Tool, Electrophoresis, 19: 3199-3206

    Article  Google Scholar 

  12. Cordwell S. J., Wasinger V. C., Cerpa-Poljak A., Duncan M. W., Humphery-Smith I. (1997) Conserved Motifs as the Basis for Recognition of Homologous Proteins across the Species Boundaries using Peptide Mass Fingerprinting, Journal of Mass Spectrometry, 32: 370-378

    Article  CAS  PubMed  Google Scholar 

  13. Verrills N. M., Harry J. H., Walsh B. J., Hains P. G., Robinson E. S. (2000) Cross-Matching Marsupial Proteins with Eutherian Mammal Databases: Proteome Analysis of Cells from UV-Induced Skin Tumours of an Opossum (Monodelphis domestica), Electrophoresis, 21: 3810-3822

    Article  CAS  PubMed  Google Scholar 

  14. Molloy M. P., Phadke N. D., Maddock J. R., Andrews P. C. (2001) Two-Dimensional Elec­tro­phoresis and Peptide Mass Fingerprinting of Bacterial Outer Membrane Proteins, Electrophoresis, 22: 1686-1696

    Article  CAS  PubMed  Google Scholar 

  15. Shevchenko A., Sunyaev S., Loboda A., Bork P., Ens W., Standing K. G. (2001) Charting the Proteomes of Organisms with Unsequenced Genomes by MALDI-Quadrapole Time-of-Flight Mass Spectrometry and BLAST Homology Searching, Analytical Chemistry, 73: 1917-1926

    Article  CAS  PubMed  Google Scholar 

  16. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. (1997) Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs, Nucleic Acids Research, 25: 3389-402

    Article  CAS  PubMed  Google Scholar 

  17. Liska A. J., Shevchenko A. (2003) Expanding the Organismal Scope of Proteomics: Cross-Species Protein Identification by Mass Spec­trometry and its Implications, Proteomics, 3: 19-28

    Article  CAS  PubMed  Google Scholar 

  18. Habermann B., Oegema J., Sunyaev S., Shevchenko A. (2004) The Power and Limitations of Cross-Species Identification by Mass Spectrometry-Driven Sequence Similarity Searches, Molecular & Cellular Proteomics, 3: 238-249

    Article  CAS  Google Scholar 

  19. Grossmann J., Fischer B., Baerenfaller K., Owiti J., Buhmann J. M., Gruissem W., Baginsky S. (2007) A Workflow to Increase the Detection Rate of Proteins from Unsequenced Organisms in High-Throughput Proteomics Experiments, Proteomics, 7: 4245-4254

    Article  CAS  PubMed  Google Scholar 

  20. Waridel P., Frank A., Thomas H., Surendranath V., Sunyaev S., Pevzner P., Shevchenko A. (2007) Sequence Similarity-Driven Proteomics in Organisms with Unknown Genomes by LC-MS/MS and Automated De novo Sequencing,, Proteomics, 7: 2318-2329

    Article  CAS  PubMed  Google Scholar 

  21. Pitzer E., Masselot A., Colinge J. (2007) Assessing Peptide De novo Sequencing Algorithms Performance on Large and Diverse Data Sets, Proteomics, 7: 3051-3054

    Article  CAS  PubMed  Google Scholar 

  22. Pevtsov S., Fedulova I., Mirzaei H., Buck C., Zhang X. (2006) Performance Evaluation of Existing De novo Sequencing Algorithms, Journal of Proteome Research, 5: 3018-3028

    Article  CAS  PubMed  Google Scholar 

  23. Ma B., Zhang K., Hendrie C., Liang C., Li M., Doherty-Kirby A., Lajoie G. (2003) PEAKS: Powerful Software for Peptide De novo Sequencing by Tandem Mass Spectrometry, Rapid Communications in Mass Spectrometry, 17: 2337-2342

    Article  CAS  PubMed  Google Scholar 

  24. Grossmann J., Roos F. F., Cieliebak M., Liptak Z., Mathis L. K., Muller M. (2005) Gruissem W., Baginsky S., AUDENS: A Tool for Automated Peptide De novo Sequencing, Journal of Proteome Research, 4: 1768-1774

    Article  CAS  PubMed  Google Scholar 

  25. Halligan B. D., Ruotti V., Twigger S. N., Greene A. S. (2005) DeNovoID: A Web-Based Tool for Identifying Peptides from Sequence and Mass Tags Deduced from De novo Peptide Sequencing by Mass Spectrometry, Nucleic Acids Research, 33: W376-W381

    Article  CAS  PubMed  Google Scholar 

  26. Raucci G., Gabrielli M., Novelli S., Picariello G., Collins S. H. (2005) CHASE, a Charge-Assisted Sequencing Algorithm for Automated Homology Based Protein Identification with Matrix Assisted Laser Desorption/Ionization Time of Flight Post-Source Decay Fragmen­tation Data, Journal of Mass Spectrometry, 40: 475-488

    Article  CAS  PubMed  Google Scholar 

  27. Han Y., Ma B., Zhang K. (2004) SPIDER: Software for Protein Identification from Sequence Tags with De novo Sequencing Error, Proceedings/IEEE Computational Systems Bioinformatics Conference, 206-215

    Google Scholar 

  28. Russeth K. P., Higgins L., Andrews M. T. (2006) Identification of Proteins from Non-Model Organisms Using Mass Spectrometry: Application to a Hibernating Mammal, Journal of Proteome Research, 5: 829-839

    Article  CAS  PubMed  Google Scholar 

  29. Ostrowshi M., Fegatella F., Wasinger V., Guilhaus M., Corthals G. L., Cavicchioli R. (2004) Cross-Species Identification of Proteins from Proteome Profiles of the Marine Oligo­trophic Ultramircobacterium, Sphin­gopyxis alaskensis, Proteomics, 4: 1779-1788

    Article  Google Scholar 

  30. Kim H. J., Lee D. Y., Lee D. H., Park Y. C., Kweon D. H., Ryu Y. W., Seo J. H. (2004) Strategic Proteome Analysis of Candida magoliae with an Unsequenced Genome, Proteomics, 4: 3588-3599

    Article  CAS  PubMed  Google Scholar 

  31. Samyn B., Sergeant K., Memmi S., Debyser G., Devreese B., Van Beeumen J. (2006) MALDI-TOF/TOF De novo Sequence Analysis of 2D PAGE Seperated Proteins from Halorhodospira halophila, a Bacterium with Unsequenced Genome, Electrophoresis, 27: 2702-2711

    Article  CAS  PubMed  Google Scholar 

  32. Savidor A., Donahoo R. S., Hurtado-Ganzales O., Land M. L., Shah M. B., Lamour K. H., McDonald W. H. (2008) Cross Species Global Proteomics Reveals Conserved and Unique Processes in Phytophthora sojae and Phytophthora ramorum, Molecular & Cellular Proteomics, 7: 1501-1516

    Article  CAS  Google Scholar 

  33. Ahram M., Strittmatter E. F., Monroe M. E., Adkins J. N., Hunter J. C., Miller J. H., Springer D. L. (2005) Identification of Shed Proteins from Chinese Hamster Ovary Cells: Application of Statistical Confidence using Human and Mouse Protein Databases, Proteomics, 5: 1815-1826

    Article  CAS  PubMed  Google Scholar 

  34. Nanduri B., Lawrence M. L., Vanguri S., Brugess S. C. (2005), Proteomics Analysis using an Unfinished Bacterial Genome: The Effects of Subminimum Inhibitory Concertrations of Antibiotics on Mannheimia Haemolytica Virulance Factor Expression, Proteomics, 5: 4852-4863

    Article  CAS  PubMed  Google Scholar 

  35. Sun J., Wang W., Hundertmark C., Zeng A. P., Jahn D., Deckwer W. D. (2006) A Protein Database Constructed from Low Coverage Genomic Sequence of Bacillus megaterium and its use for Accelerated Proteomics Analysis, Journal of Biotechnology, 124, 3, 486-495

    Article  CAS  PubMed  Google Scholar 

  36. Huang M., Chen T., Chan Z. (2006) An Evaluation for Cross-Species Proteomics Research by Publicly Available Expressed Sequence Tag Database Search using Tandem Mass Spectral Data, Rapid Communications in Mass Spectrometry, 20: 2635-2640

    Article  CAS  PubMed  Google Scholar 

  37. Edwards N. J. (2007) Novel Peptide Identifi­cation from Tandem Mass Spectra using ESTs and Sequence Database Compression, Molecular Systems Biology, 3: 102

    PubMed  Google Scholar 

  38. Grimplet J., Gasper J. W., Gancel A., Sauvage F., Romieu C. (2005) Including Mutations from Conceptually Translated Expressed Sequence Tags into Orthologous Proteins Improves the Preliminary Assignment of Peptide Mass Fingerprints on Non-Model Genomes, Proteomics, 5: 2769-2777

    Article  CAS  PubMed  Google Scholar 

  39. Kwon K., Kim M., Kim J. Y., Kim K. W., Kim S., Park Y. M., Yoo J. S. (2003) Efficiency Improvement of Peptide Identification for an Organism without Complete Genome Sequence, using Expressed Sequence Tag Database and Tandem Mass Spectral Data, Proteomics, 3: 2305-2309

    Article  CAS  PubMed  Google Scholar 

  40. Kim S. I., Kim J. Y., Kim E. A., Kwon K. H., Kim K. W., Cho K., Lee J. H., Nam M. H., Yang D. C., Yoo J. S., Park Y. M. (2003) Proteome Analysis of Hairy Root from Panax Ginseng C.A. Meyer using Peptide Fingerprinting, Internal Sequencing and Expressed Sequence Tag Data, Proteomics, 3, 2379-2392

    Article  CAS  PubMed  Google Scholar 

  41. Nam M. H., Heo E. J., Kim J. Y., Kim S. I., Kwon K. H., Seq J. B., Kwon O., Yoo J. S., Park Y. M. (2003) Proteome Analysis of the Responses of Panax Ginseng C. A. Meyer Leaves to High Light: Use of Electrospray Ionization Quadrapole Time of Flight Mass Spectrometry and Expressed Sequence Tag Data, Proteomics, 3: 2351-2367

    Article  CAS  PubMed  Google Scholar 

  42. Porubleva L., Vander Velden K., Kothari S., Oliver D. J., Chitnis P. R. (2001) The Proteome of Maize Leaves: Use of Gene Sequences and Expressed Sequence Tag Data for Identification of Proteins with Peptide Mass Fingerprints, Electrophoresis, 22: 1724-1738

    Article  CAS  PubMed  Google Scholar 

  43. Mooney B. P., Krishnan H. B., Thelen J. J. (2004) High Throughput Mass Fingerprinting of Soy Bean Seed Proteins: Automated Workflow and Utility of Unigene Expressed Sequence Tag Databases for Protein Iden­tification, Phytochemistry, 65: 1733-1744

    Article  CAS  PubMed  Google Scholar 

  44. Sunyaev S., Liska A. J., Golod A., Schevchenko A. (2003) MultiTag: Multiple Error-Tolerant Sequence Tag Search for the Sequence-Similarity Identification of Proteins by Mass Spectrometry, Analytical Chemistry, 75: 1307-1315

    Article  CAS  PubMed  Google Scholar 

  45. Liska A. J., Sunyaev S., Shilov I. N., Schaeffer D. A., Schevchenko A. (2006) Error-tolerant EST Database Searches by Tandem Mass Spectrometry and multiTag Software, Proteomics, 5: 4118-4122

    Article  Google Scholar 

  46. Snijders A. P., De Koning B., Wright P. C. (2007) Relative Quantification of Proteins Across the Species Boundary Through the use of Shared Peptides, Journal of Proteome Research, 6: 97-104

    Article  CAS  PubMed  Google Scholar 

  47. Pandhal J., Snijders A. P., Wright P. C., Biggs C. A. (2008) A Cross-Species Quan­titative Proteomics Study of Salt Adaption in a Halotolerant Enviromental Isolate using 15N Metabolic Labelling, Proteomics, 8: 2266-2284

    Article  CAS  PubMed  Google Scholar 

  48. Thiede B., Hohenwarter W., Krah A., Mattow J., Schmid M., Schmidt F., Jungblut P. R. (2005) Peptide Mass Fingerprinting, Methods, 35: 237-247

    Article  CAS  PubMed  Google Scholar 

  49. Hernandez P., Muller M., Appel R. D. (2006) Automated Protein Identification by Tandem Mass Spectrometry: Issues and Strategies, Mass Spectrometry Reviews, 25: 235-254

    Article  CAS  PubMed  Google Scholar 

  50. Peng J., Gygi S. P. (2001) Proteomics: The Move to Mixtures, Journal of Mass Spectrometry, 36: 1083-1091

    Article  CAS  PubMed  Google Scholar 

  51. Standing K. G. (2003) Peptide and Protein De novo Sequencing by Mass Spectrometry, Current Opinion Structural Biology, 13: 595-601

    Article  CAS  Google Scholar 

  52. Issaq H., Veenstra T. (2008) Two-Dimensional Polyacrylamide Gel Electrophoresis (2D-PAGE): Advantages and Perspectives, Biotechniques, 44: 697-700

    Article  CAS  PubMed  Google Scholar 

  53. Van den Bergh G., Arckens L. (2005) Recent Advances in 2D Electrophoresis: An Array of Possibilities, Expert Reviews Proteomics, 2: 243-252

    Article  Google Scholar 

  54. Marengo E., Robotti E., Bobba M. (2008) 2D-PAGE Maps Analysis, Methods Molecular Biology, 428: 291-325

    Article  CAS  Google Scholar 

  55. Perkins D. N., Pappin D. J. C., Creasy D. M., Cottrell J. S. (1999) Probability-Based Protein Identification by Searching Sequence Databases Using Mass Spectrometry Data, Electrophoresis, 20: 3551-3567

    Article  CAS  PubMed  Google Scholar 

  56. Roe M. R., Griffin T. J. (2006) Gel-free Mass Spectrometry Based High Throughput Proteomics: Tools for Studying Biological Response of Proteins and Proteomes, Proteomics, 6, 17, 4678-4687

    Article  CAS  PubMed  Google Scholar 

  57. Palagi P. M., Hernandez P., Walther D., Appel R. D. (2006) Proteome Informatics I: Bioinformatics Tools for Processing Experi­mental Data, Proteomics, 6, 20, 5435-5444

    Article  CAS  PubMed  Google Scholar 

  58. Elias J., Gygi S. (2007) Target-Decoy Search Strategy for Increased Confidence in Large-Scale Protein Identifications by Mass Spectrometry, Nature Methods, 4: 207-214

    Article  CAS  PubMed  Google Scholar 

  59. Deutsch E. W., Lam H., Aebersold R. (2008) Data Analysis and Bioinformatics Tools for Tandem Mass Spectrometry in Proteomics, Physiological Genomics, 33, 1, 18-25

    Article  CAS  PubMed  Google Scholar 

  60. Mann M., Wilm M. (1994) Error-Tolerant Identification of Peptides in Sequence Databases by Peptide Sequence, Analytical Chemistry, 66, 24: 4390-4399

    Article  CAS  PubMed  Google Scholar 

  61. Kim S, Gupta N, Bandeira N, Pevzner PA. (2009) Spectral dictionaries: Integrating De novo Peptide Sequencing with Database Search of Tandem Mass Spectra, Molecular & Cellular Proteomics, 8: 53-69

    Article  CAS  Google Scholar 

  62. Bandeira N., Pham V., Pevzner P., Arnott D., Lill J.R. (2008) Automated De novo Protein Sequencing of Monoclonal Antibodies, Nature Biotechnology, 26: 1336-1338

    Article  CAS  PubMed  Google Scholar 

  63. McDonald L., Beynon R. J. (2006) Positional Proteomics: Preparation of Amino-Terminal Peptides as a Strategy for Proteome Simplification and Characterization, Nature Protocols, 1, 4: 1790-1798

    Article  CAS  PubMed  Google Scholar 

  64. Lam H., Deutsch E. W., Eddes J. S., Eng J. K., King N., Stein S. E., Aebersold R. (2007) Development and Validation of a Spectral Library Searching Method for Peptide Identifi­cation from MS/MS, Proteomics, 7, 5: 655-667

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

James Wright acknowledges NERC (NER/S/R/2005/13607) for his PhD funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Hubbard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wright, J.C., Beynon, R.J., Hubbard, S.J. (2010). Cross Species Proteomics. In: Hubbard, S., Jones, A. (eds) Proteome Bioinformatics. Methods in Molecular Biology™, vol 604. Humana Press. https://doi.org/10.1007/978-1-60761-444-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-444-9_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-443-2

  • Online ISBN: 978-1-60761-444-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics