Skip to main content

Hydroponic Isotope Labeling of Entire Plants and High-Performance Mass Spectrometry for Quantitative Plant Proteomics

  • Protocol
  • First Online:
Quantitative Methods in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 893))

Abstract

Hydroponic isotope labeling of entire plants (HILEP) combines hydroponic plant cultivation and metabolic labeling with stable isotopes using 15N-containing inorganic salts to label whole and mature plants. Employing 15N salts as the sole nitrogen source for HILEP leads to the production of healthy-looking plants which contain 15N proteins labeled to nearly 100%. Therefore, HILEP is suitable for quantitative plant proteomic analysis, where plants are grown in either 14N- or 15N-hydroponic media and pooled when the biological samples are collected for relative proteome quantitation. The pooled 14N-/15N-protein extracts can be fractionated in any suitable way and digested with a protease for shotgun proteomics, using typically reverse phase liquid chromatography nanoelectrospray ionization tandem mass spectrometry (RPLC-nESI-MS/MS). Best results were obtained with a hybrid ion trap/FT-MS mass spectrometer, combining high mass accuracy and sensitivity for the MS data acquisition with speed and high-throughput MS/MS data acquisition, increasing the number of proteins identified and quantified and improving protein quantitation. Peak processing and picking from raw MS data files, protein identification, and quantitation were performed in a highly automated way using integrated MS data analysis software with minimum manual intervention, thus easing the analytical workflow. In this methodology paper, we describe how to grow Arabidopsis plants hydroponically for isotope labeling using 15N salts and how to quantitate the resulting proteomes using a convenient workflow that does not require extensive bioinformatics skills.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262

    Article  PubMed  CAS  Google Scholar 

  2. Mann M (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7:952–958

    Article  PubMed  CAS  Google Scholar 

  3. Gruhler A, Schulze WX, Matthiesen R et al (2005) Stable isotope labeling of Arabidopsis thaliana cells and quantitative proteomics by mass spectrometry. Mol Cell Proteomics 4:1697–1709

    Article  PubMed  CAS  Google Scholar 

  4. Conrads TP, Alving K, Veenstra TD et al (2001) Quantitative analysis of bacterial and mammalian proteomes using a combination of cysteine affinity tags and 15N-metabolic labeling. Anal Chem 73:2132–2139

    Article  PubMed  CAS  Google Scholar 

  5. Kolkman A, Daran-Lapujade P, Fullaondo A et al (2006) Proteome analysis of yeast response to various nutrient limitations. Mol Syst Biol 2:2006.0026

    Article  PubMed  Google Scholar 

  6. Heck AJ, Krijgsveld J (2004) Mass spectrometry-based quantitative proteomics. Exp Rev Proteomics 1:317–326

    Article  CAS  Google Scholar 

  7. Benschop JJ, Mohammed S, O’Flaherty M et al (2007) Quantitative phospho-proteomics of early elicitor signalling in Arabidopsis. Mol Cell Proteomics 6:1198–1214

    Article  PubMed  CAS  Google Scholar 

  8. Engelsberger WR, Erban A, Kopka J, Schulze WX (2006) Metabolic labeling of plant cell cultures with K15NO3 as a tool for quantitative analysis of proteins and metabolites. Plant Methods 2:14

    Article  PubMed  Google Scholar 

  9. Huttlin EL, Hegeman AD, Harms AC, Sussman MR (2007) Comparison of full versus partial metabolic labeling for quantitative proteomics analysis in Arabidopsis thaliana. Mol Cell Proteomics 6:860–881

    Article  PubMed  CAS  Google Scholar 

  10. Nelson CJ, Huttlin EL, Hegeman AD et al (2007) Implications of 15N-metabolic labeling for automated peptide identification in Arabidopsis thaliana. Proteomics 7:1279–1292

    Article  PubMed  CAS  Google Scholar 

  11. Lanquar V, Kuhn L, Lelievre F et al (2007) N-15-Metabolic labeling for comparative plasma membrane proteomics in Arabidopsis cells. Proteomics 7:750–754

    Article  PubMed  CAS  Google Scholar 

  12. Stanislas T, Bouyssie D, Rossignol M et al (2009) Quantitative proteomics reveals a dynamic association of proteins to detergent-resistant membranes upon elicitor signaling in tobacco. Mol Cell Proteomics 8:2186–2198

    Article  PubMed  CAS  Google Scholar 

  13. Ippel JH, Pouvreau L, Kroef T et al (2004) In vivo uniform (15)N-isotope labeling of plants: using the greenhouse for structural proteomics. Proteomics 4:226–234

    Article  PubMed  CAS  Google Scholar 

  14. Bindschedler LV, Palmblad M, Cramer R (2008) Hydroponic isotope labeling of entire plants (HILEP) for quantitative plant proteomics; an oxidative stress case study. Phytochemistry 69:1962–1972

    Article  PubMed  CAS  Google Scholar 

  15. Palmblad M, Bindschedler LV, Cramer R (2007) Quantitative proteomics using uniform (15)N-labeling, MASCOT, and the trans-proteomic pipeline. Proteomics 7:3462–3469

    Article  PubMed  CAS  Google Scholar 

  16. Schaff JE, Mbeunkui F, Blackburn K et al (2008) SILIP: a novel stable isotope labeling method for in planta quantitative proteomic analysis. Plant J 56:840–854

    Article  PubMed  CAS  Google Scholar 

  17. Hebeler R, Oeljeklaus S, Reidegeld KA et al (2008) Study of early leaf senescence in Arabidopsis thaliana by quantitative proteomics using reciprocal 14N/15N labeling and difference gel electrophoresis. Mol Cell Proteomics 7:108–120

    PubMed  CAS  Google Scholar 

  18. Palmblad M, Mills DJ, Bindschedler LV (2008) Heat-shock response in Arabidopsis thaliana explored by multiplexed quantitative proteomics using differential metabolic labeling. J Proteome Res 7:780–785

    Article  PubMed  CAS  Google Scholar 

  19. Keller A, Eng J, Zhang N et al (2005) A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol 1:2005.0017

    Article  PubMed  Google Scholar 

  20. Mortensen P, Gouw JW, Olsen JV et al (2010) MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. J Proteome Res 9:393–403

    Article  PubMed  CAS  Google Scholar 

  21. Andreev VP, Li L, Rejtar T et al (2006) New algorithm for N-15/N-14 quantitation with LC-ESI-MS using an LTQ-FT mass spectrometer. J Proteome Res 5:2039–2045

    Article  PubMed  CAS  Google Scholar 

  22. Gallagher SR (2001) One-dimensional SDS gel electrophoresis of proteins. Curr Protoc Protein Sci Chapter 10:Unit 10.1

    Google Scholar 

  23. Schagger H (2006) Tricine-SDS–PAGE. Nat Protoc 1:16–22

    Article  PubMed  Google Scholar 

  24. Candiano G, Bruschi M, Musante L et al (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333

    Article  PubMed  CAS  Google Scholar 

  25. Noren H, Svensson P, Andersson B (2004) A convenient and versatile hydroponic cultivation system for Arabidopsis thaliana. Physiol Plant 121:343–348

    Article  CAS  Google Scholar 

  26. Hoagland D (1920) Optimum nutrient solutions for plants. Science 52:562–564

    Article  PubMed  CAS  Google Scholar 

  27. Huttner D, Bar-Zvi D (2003) An improved, simple, hydroponic method for growing Arabidopsis thaliana. Plant Mol Biol Rep 21:59–63

    Article  Google Scholar 

  28. Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence V. Bindschedler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bindschedler, L.V., Mills, D.J.S., Cramer, R. (2012). Hydroponic Isotope Labeling of Entire Plants and High-Performance Mass Spectrometry for Quantitative Plant Proteomics. In: Marcus, K. (eds) Quantitative Methods in Proteomics. Methods in Molecular Biology, vol 893. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-885-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-885-6_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-884-9

  • Online ISBN: 978-1-61779-885-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics