Skip to main content

SILAC for the Study of Mammalian Cell Lines and Yeast Protein Complexes

  • Protocol
  • First Online:
Quantitative Methods in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 893))

Abstract

Through crucial advancements in quantitative mass spectrometry (MS), proteomics has evolved from taking mere “snapshots” of proteomes to thoroughly studying dynamic changes in entire proteomes and characterizing intricate protein–protein interaction or signaling networks. Thus, quantitative MS-based proteomics offers the unique potential to place proteins into their functional context and, moreover, to improve our understanding of the molecular processes involved in the development, survival, or pathology of cells and organisms. Among the vast variety of techniques developed for the accurate quantification of proteins via MS, stable isotope labeling by amino acids in cell culture (SILAC) arguably represents the most elegant method. In this chapter, we provide a detailed protocol for the establishment of SILAC for mammalian cell culture systems. In addition, to exemplify the high versatility of SILAC for addressing different biological questions, we describe the successful “pairing” of SILAC with conventional affinity purification (AP)-MS approaches allowing for accurately characterizing protein complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  PubMed  CAS  Google Scholar 

  2. Blagoev B, Kratchmarova I, Ong SE et al (2003) A proteomics strategy to elucidate functional protein–protein interactions applied to EGF signaling. Nat Biotechnol 21:315–318

    Article  PubMed  CAS  Google Scholar 

  3. Oeljeklaus S, Meyer HE, Warscheid B (2009) New dimensions in the study of protein complexes using quantitative mass spectrometry. FEBS Lett 583:1674–1683

    Article  PubMed  CAS  Google Scholar 

  4. Wang X, Huang L (2008) Identifying dynamic interactors of protein complexes by quantitative mass spectrometry. Mol Cell Proteomics 7:46–57

    PubMed  Google Scholar 

  5. Mousson F, Kolkman A, Pijnappel WW et al (2008) Quantitative proteomics reveals regulation of dynamic components within TATA-binding protein (TBP) transcription complexes. Mol Cell Proteomics 7:845–852

    Article  PubMed  CAS  Google Scholar 

  6. Ibarrola N, Kalume DE, Gronborg M et al (2003) A proteomic approach for quantitation of phosphorylation using stable isotope labeling in cell culture. Anal Chem 75:6043–6049

    Article  PubMed  CAS  Google Scholar 

  7. Gruhler A, Olsen JV, Mohammed S et al (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4:310–327

    Article  PubMed  CAS  Google Scholar 

  8. Ong SE, Mittler G, Mann M (2004) Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat Methods 1:119–126

    Article  PubMed  CAS  Google Scholar 

  9. Wiśniewski JR, Zougman A, Krüger S et al (2008) Constitutive and dynamic phosphorylation and acetylation sites on NUCKS, a hypermodified nuclear protein, studied by quantitative proteomics. Proteins 73:710–718

    Article  PubMed  Google Scholar 

  10. Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840

    Article  PubMed  CAS  Google Scholar 

  11. Meierhofer D, Wang X, Huang L, Kaiser P (2008) Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J Proteome Res 7:4566–4576

    Article  PubMed  CAS  Google Scholar 

  12. Oppermann FS, Gnad F, Olsen JV et al (2009) Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics 8:1751–1764

    Article  PubMed  CAS  Google Scholar 

  13. Olsen JV, Vermeulen M, Santamaria A et al (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3(104):ra3

    Google Scholar 

  14. Milner E, Barnea E, Beer I, Admon A (2006) The turnover kinetics of major histocompatibility complex peptides of human cancer cells. Mol Cell Proteomics 5:357–365

    PubMed  CAS  Google Scholar 

  15. Bonaldi T, Straub T, Cox J et al (2008) Combined use of RNAi and quantitative proteomics to study gene function in Drosophila. Mol Cell 31:762–772

    Article  PubMed  CAS  Google Scholar 

  16. Soufi B, Kumar C, Gnad F et al (2010) Stable isotope labeling by amino acids in cell culture (SILAC) applied to quantitative proteomics of Bacillus subtilis. J Proteome Res 9:3638–3646

    Article  PubMed  CAS  Google Scholar 

  17. Gruhler A, Schulze WX, Matthiesen R et al (2005) Stable isotope labeling of Arabidopsis thaliana cells and quantitative proteomics by mass spectrometry. Mol Cell Proteomics 4:1697–1709

    Article  PubMed  CAS  Google Scholar 

  18. Sury MD, Chen JX, Selbach M (2010) The SILAC fly allows for accurate protein quantification in vivo. Mol Cell Proteomics 9:2173–2183

    Article  PubMed  CAS  Google Scholar 

  19. Krüger M, Moser M, Ussar S et al (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134:353–364

    Article  PubMed  Google Scholar 

  20. Ong SE, Kratchmarova I, Mann M (2003) Properties of 13C-substituted arginine instable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res 2:173–181

    Article  PubMed  CAS  Google Scholar 

  21. Bendall SC, Hughes C, Stewart MH et al (2008) Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Mol Cell Proteomics 7:1587–1597

    Article  PubMed  CAS  Google Scholar 

  22. Bicho CC, de Lima AF, Chen ZA et al (2010) A genetic engineering solution to the “arginine conversion problem” in stable isotope labeling by amino acids in cell culture (SILAC). Mol Cell Proteomics 9:1567–1577

    Article  PubMed  CAS  Google Scholar 

  23. Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262

    Article  PubMed  CAS  Google Scholar 

  24. Beynon RJ, Pratt JM (2005) Metabolic labeling of proteins for proteomics. Mol Cell Proteomics 4:857–872

    Article  PubMed  CAS  Google Scholar 

  25. Molina H, Yang Y, Ruch T et al (2009) Temporal profiling of the adipocyte proteome during differentiation using a five-plex SILAC based strategy. J Proteome Res 8:48–58

    Article  PubMed  CAS  Google Scholar 

  26. Cox J, Neuhauser N, Michalski A, Scheltema RA et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805

    Google Scholar 

  27. Ong SE, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1:2650–2660

    Article  PubMed  CAS  Google Scholar 

  28. Blagoev B, Mann M (2006) Quantitative proteomics to study mitogen-activated protein kinases. Methods 40:243–250

    Article  PubMed  CAS  Google Scholar 

  29. Lößner C, Warnken U, Pscherer A, Schnölzer M (2011) Preventing arginine-to-proline conversion in a cell line independent manner during cell cultivation under SILAC conditions. Anal Biochem 412:123–125

    Google Scholar 

  30. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  31. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  PubMed  CAS  Google Scholar 

  32. Cox J, Matic I, Hilger M et al (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4:698–705

    Google Scholar 

  33. Hanke S, Besir H, Oesterhelt D, Mann M (2008) Absolute SILAC for accurate quantitation of proteins in complex mixtures down to the attomole level. J Proteome Res 7:1118–1130

    Article  PubMed  CAS  Google Scholar 

  34. Schwanhäusser B, Gossen M, Dittmar G, Selbach M (2009) Global analysis of cellular protein translation by pulsed SILAC. Proteomics 9:205–209

    Article  PubMed  Google Scholar 

  35. Doherty MK, Hammond DE, Clague MJ et al (2009) Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC. J Proteome Res 8:104–112

    Article  PubMed  CAS  Google Scholar 

  36. Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8:2796–2808

    Article  PubMed  CAS  Google Scholar 

  37. Geiger T, Cox J, Ostasiewicz P et al (2010) Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods 7:383–385

    Article  PubMed  CAS  Google Scholar 

  38. Bartke T, Vermeulen M, Xhemalce B et al (2010) Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143:470–484

    Article  PubMed  CAS  Google Scholar 

  39. Rechavi O, Kalman M, Fang Y et al (2010) Trans-SILAC: sorting out the non-cell-autonomous proteome. Nat Methods 7:923–927

    Article  PubMed  CAS  Google Scholar 

  40. Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:1541–1553

    Article  PubMed  CAS  Google Scholar 

  41. Knop M, Siegers K, Pereira G et al (1999) Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15:963–972

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Christine David and Dr. Friedel Drepper for scientific discussion as well as Christa Reichenbach, Inga Michels, and Astrid Tschapek for technical assistance. This work was supported by Deutsche Forschungsgemeinschaft, the Excellence Initiative of the German Federal and State Governments (EXC 294 BIOSS) and FOR1352.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Warscheid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Piechura, H., Oeljeklaus, S., Warscheid, B. (2012). SILAC for the Study of Mammalian Cell Lines and Yeast Protein Complexes. In: Marcus, K. (eds) Quantitative Methods in Proteomics. Methods in Molecular Biology, vol 893. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-885-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-885-6_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-884-9

  • Online ISBN: 978-1-61779-885-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics