Skip to main content

Absolute Multiplexed Protein Quantification Using QconCAT Technology

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 893))

Abstract

In addition to protein identification, protein quantification is becoming a key output of proteomic experiments. Although relative quantification techniques are more commonplace and central to discovery proteomics, most assays require absolute quantification. The growth in systems biology has also increased the demand for absolute protein abundance values for input into models. QconCATs are created by concatenating peptide sequences taken from the target proteins into artificial proteins. The QconCAT acts as a source of internal standards and enables parallel absolute quantification of multiple proteins. QconCATs are typically applied in targeted proteomic workflows and so benefit from the greater sensitivity and wider dynamic range of these approaches. In this chapter, we discuss the design, construction, expression, and deployment of a QconCAT and the resulting experiments required for multiplex absolute quantification.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Beynon RJ, Doherty MK, Pratt JM, Gaskell SJ (2005) Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides. Nat Methods 2:587–589

    Article  PubMed  CAS  Google Scholar 

  2. Pratt JM, Simpson DM, Doherty MK et al (2006) Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat Protocols 1:1–15

    Article  Google Scholar 

  3. Rivers J, Simpson DM, Robertson DH et al (2007) Absolute multiplexed quantitative analysis of protein expression during muscle development using QconCAT. Mol Cell Proteomics 6:1416–1427

    Article  PubMed  CAS  Google Scholar 

  4. Eyers C, Simpson DM, Wong CCS et al (2008) QCAL – a novel standard for assessing instrument conditions for proteome analysis. J Am Soc Mass Spectrom 19:1275–1280

    Article  PubMed  CAS  Google Scholar 

  5. Johnson H, Wong CCS, Simpson DM et al (2008) Protein quantification by selective isolation and fragmentation of isotopic pairs using FT-ICR MS. J Am Soc Mass Spectrom 19:973–977

    Article  PubMed  CAS  Google Scholar 

  6. Brun V, Masselon C, Garin J, Dupuis A (2009) Isotope dilution strategies for absolute quantitative proteomics. J Proteomics 5:740–749

    Article  Google Scholar 

  7. Zimny-Arndt U, Schmid M, Ackermann R, Jungblut PR (2009) Classical proteomics: two-dimensional electrophoresis/MALDI mass spectrometry. In: Lipton MS, Paaa-Tolic L (eds) Methods in molecular biology, vol 492. Humana, New York, NY, pp 65–91

    Google Scholar 

  8. Barr JR, Maggio VL, Patterson DG Jr et al (1996) Isotope dilution-mass spectrometric quantification of specific proteins: model application with apolipoprotein A-I. Clin Chem 42:1676–1682

    PubMed  CAS  Google Scholar 

  9. Silva JC, Denny R, Dorschel CA et al (2005) Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem 77:2187–2200

    Article  PubMed  CAS  Google Scholar 

  10. Kiyonami R, Domon B (2010) Selected reaction monitoring applied to quantitative proteomics. In: Cutillas PR, Timms JF (eds) Methods in molecular biology, vol 658. Humana, New York, NY, pp 155–166

    Google Scholar 

  11. James A, Jorgensen C (2010) Basic design of MRM assays for peptide quantification. In: Cutillas PR, Timms JF (eds) Methods in molecular biology, vol 658. Humana, New York, NY, pp 167–185

    Google Scholar 

  12. Mallick P, Schirle M, Chen SS et al (2007) Computational prediction of proteotypic peptides for quantitative proteomics. Nat Biotechnol 25:125–131

    Article  PubMed  CAS  Google Scholar 

  13. The UniProt Consortium (2010) The universal protein resource (UniProt) in 2010. Nucleic Acids Res 38:D142–D148

    Article  Google Scholar 

  14. Thiede B, Lamer S, Mattow J et al (2000) Analysis of missed cleavage sites, tryptophan oxidation and N-terminal pyroglutamylation after in-gel tryptic digestion. Rap Comm Mass Spectrom 14:496–502

    Article  CAS  Google Scholar 

  15. Schechter I, Berger A (1967) On the size of the active site in proteases I. Papain. Biochem Biophys Res Comm 27:157–162

    Article  PubMed  CAS  Google Scholar 

  16. Siepen J, Keevil EJ, Knight D, Hubbard SJ (2007) Prediction of missed cleavage sites in tryptic peptides aids protein identification in proteomics. J Proteome Res 6:399–408

    Article  PubMed  CAS  Google Scholar 

  17. Monigatti F, Berndt P (2004) Algorithm for accurate similarity measurements of peptide mass fingerprints and its application. J Am Soc Mass Spectrom 16:13–21

    Article  Google Scholar 

  18. Sambrook J, Russel DW (eds) (2001) Preparation and transformation of competent E. coli using calcium chloride (Protocol 25). Molecular cloning a laboratory manual, 3rd edn, vol 1. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  19. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234

    Article  PubMed  CAS  Google Scholar 

  20. Robertson C, Cortens JP, Beavis RC (2004) Open source system for analyzing, validating, and storing protein identification data. J Proteome Res 3:1234–1242

    Article  Google Scholar 

  21. Ji L, Barrett T, Ayanbule O et al (2010) NCBI peptidome: a new repository for mass spectrometry proteomics data. Nucleic Acids Res 38:D731–D735

    Article  PubMed  CAS  Google Scholar 

  22. Desiere F, Deutsch EW, King NL et al (2006) The PeptideAtlas Project. Nucleic Acids Res 34:D655–D658

    Article  PubMed  CAS  Google Scholar 

  23. Vizcaíno JA, Côté R, Reisinger F et al (2009) A guide to the proteomics identifications database proteomics data repository. Proteomics 9:4276–4283

    Article  PubMed  Google Scholar 

  24. Beynon RJ (2005) A simple tool for drawing proteolytic peptide maps. Bioinformatics 21:674–675

    Article  PubMed  CAS  Google Scholar 

  25. Picotti P, Bodenmiller B, Mueller L et al (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138:795–806

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Beynon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Brownridge, P.J., Harman, V.M., Simpson, D.M., Beynon, R.J. (2012). Absolute Multiplexed Protein Quantification Using QconCAT Technology. In: Marcus, K. (eds) Quantitative Methods in Proteomics. Methods in Molecular Biology, vol 893. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-885-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-885-6_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-884-9

  • Online ISBN: 978-1-61779-885-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics