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Abstract

Ontologies provide a representation of precise knowledge about concepts,
their attributes and relations. The Dempster-Shafer theory provides a
representation of epistemic plausibilities. In AI both representations are
typically developed separately on purpose, which is appropriate unless
their combination is required. Real world applications, however, some-
times require a combination of both.

In this paper we will present such a combination of ontological and
uncertain knowledge. Our approach arises from the need of a room classi-
fication system for representing room concepts (in the sense of classifying
names that are cognitively assigned to rooms, such as ’kitchen’, ’labora-
tory’, ’office’) that can be derived from objects occurring in the rooms.
These room concepts can only be determined with a certain degree of
belief, not so much depending on the system’s quality as depending on
ambiguities in the cognitive assignment of room concepts. Hence, uncer-
tainty about concepts that exist in reality also needs to be represented in
the application.

1 Introduction

Our aim is to develop a system that identifies the room concept of a room on
the basis of visual information in order to accomplish further tasks based on
this classification. Room concepts (cf. [12]) are distinguished by means of the
functional role that is associated with actions that can be performed in such
rooms. In turn, the functions and actions depend on several physical objects
that have to be in the room. The objects occurring in a room therefore imply
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the room’s room concept. For example, a kitchen is a place where you can make
coffee, wash dishes, or cook. These activities depend on certain objects, namely
interior furniture, equipment, or ingredients. In our example, the activity ’make
coffee’ depends on a coffee machine, a mug, sugar, milk, water, or similar objects.
Hence, the perception of the concepts of a room depend on its contained objects
as they indicate possible functional aspects [14] and consequently the functional
role, i.e. the room concept itself.

This analysis provides significant opportunities for cognitive, spatially aware
systems. For instance, intelligent buildings using this system are able to answer
user requests, such as “Where can I find an unoccupied kitchen?” or “Tell me all
possible seminar rooms that have at least a video projector and a white board.”
Or autonomous robots can respond to tasks that refer to special activities they
can perform considering the respective room concepts and occurring objects.
Both examples also show a strong connection to human-computer interaction,
possibly realised with natural language dialogues, which can directly access the
concepts described above.

For representing necessary concepts of rooms and objects in our application
we decided to apply an ontological knowledge structure by developing a domain
ontology. The decision to use an ontology is based upon its advantage for formal
representation of objects and their relations and its direct support of re-usability
and knowledge sharing [7]. For the latter, our domain ontology is guided by an
ontological library for linguistic and cognitive engineering [13], which also offers
a solid basis for further development. That linguistic terms also have a strong
impact on the types of room concepts and objects confirms our decision for
using a domain ontology as it can provide a mapping to a linguistic ontology
and can be used within a dialogue system [8].

However, we must also represent degrees of uncertainty for each room con-
cept because of the possibility of one room providing multiple functions and
uncertain evidence. Thus, the analysis of a room indicates room concepts with
a certain evidence. This is due not to the shortcoming of the system but to the
fact that a room scene tends to be compatible with more than just one room
concept. For example, when the system recognizes a room full of chairs and ta-
bles it may be confronted with a study room, a lecture hall, or a seminar room.
Thus, we are usually not able to make distinct definitions of a unique room
concept and we specify the evidence for a certain room concept instead. In our
work this evidence is represented via the Belief function of the Dempster-Shafer
theory [18].

In the following, we will give detailed description of the representation of on-
tological knowledge within our system as well as the representation of uncertain
knowledge, and we will demonstrate a combination of ontological and uncertain
knowledge considering our application as example.
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2 Ontological Knowledge

Ontologies are nowadays widely used in different applications ranging from the
attempt to represent complete general knowledge and commonsense, such as
OpenCyc1, to the use in particular domains to represent specific concepts, such
as Medical Information2. [9] specify several principles by which ontologies can be
modeled and classified and they give a detailed overview of technical issues and
applications using ontologies hitherto. This spread of ontological applications
also results from the development of the SemanticWeb [5], which is intended to
provide a navigable structure aligned by its semantic concepts.

As we have to represent rooms, their interior objects, and the room con-
cepts they support, we require a taxonomical and partonomical structure: The
room concepts can be grouped hierarchically in a taxonomy, whereas interior
objects are parts of the respective rooms. This representation is also affected
by linguistic expressions of the represented concepts caused by the intended di-
alog between a user and the system, as we have mentioned with the intelligent
building example above. Therefore, the structure has to take into account also
the semantics of those expressions corresponding with the room scenes. Fur-
ther considerations are reasoning strategies that are inherently supported by
the structure. As all of these requirements are covered by ontological structures
(see [9]) and because of the reasons we gave in the introduction, we decided to
develop a domain ontology for representing scenes, objects, and room concepts.
We finally have to consider the particular modelling of a domain ontology for
our application.

Besides the different ontology principles, the role of an ontology can be out-
lined as “(i) to set out a consistent and well-specified general modelling scheme
which is free of contradiction and from which follows a set of generic proper-
ties that necessarily hold over the entities covered and, (ii) to support problem
solving and inference within the domain of concern”[3]. Yet a realisation of
the first claim is not thus simple. Although there are several guidelines for the
design of ontologies (for instance [20]), there are still problems about consis-
tency and coherence throughout various ontologies. Complications usually arise
in case of ontology mappings and it becomes difficult to mediate between dif-
ferent ontologies because they are not interchangeable. Hence, the sharing of
ontological knowledge becomes complex and ontologies are rather remade than
re-used. Recently, different approaches try to provide not just guidance but
a systematic frame for designing ontologies. As we do not want to encounter
the problems of indiscriminately designed ontologies, our developed ontology
for rooms and their objects will be integrated into an ontology framework that
already provides a more abstract scope for linguistic and cognitive engineering,
namely DOLCE [13].

1http://www.opencyc.org/
2http://www.ifomis.uni-saarland.de/
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2.1 Domain Ontology Modelling

DOLCE was originally developed as a part of the WonderWeb project3 with
a strong influence from natural language and human commonsense. The ba-
sic categories of DOLCE are Perdurants, Endurants, Qualities, and Abstracts.
Perdurants describe entities that unfold in time (e.g., an event of some kind),
whereas Endurants describe entities that are wholly present at each point in
time (e.g., a cup, a glass, a desk, etc.). Qualities inhere in entities, which means
that every entity can have certain qualities, even Qualities themselves. The
value of these qualities are expressed by entities of the Abstract concept, called
quale.

Particular
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Physical Object

Non−Agentive

Physical Object

Quality
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Room Concept Quality

Abstract
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Room Concept

Perdurant

Physical Room Interior Room Object
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Figure 1: Ontological room concepts of the domain ontology. The concepts in
italic are indicating DOLCE’s concepts

The rooms we will analyse will be classified as an instance of Non-Agentive
Physical Object (a subclass of Endurant) as it defines physical objects that have
direct spatial qualities, a life (exist over time), and we do not ascribe intentions,
beliefs, or desires to them (in contrast to Agentive Objects). The objects that
occur in a room will be an instance of Non-Agentive Physical Object as well
because we are currently omitting humans or robots in rooms as their functional
indication of the room concept might be low.

3http://wonderweb.semanticweb.org
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Starting from this we created a hierarchy of specific non-agentive physical
objects, to wit physical rooms and their contained objects. Physical rooms in
this case define the bare rooms that are characterised by their walls, floors,
ceilings, and dimensions and that can be constituted by further physical objects
(such as chairs, desks, shelfs, etc.). These physical rooms are not distinguished
by their functional role yet. Instead the hierarchy of possible room concepts are
classified as an instance of Abstract. This distinction between physical rooms
(that contain objects) and the abstract room concepts (that can be represented
by a physical room) is quite crucial. It is a precise modeling of the relations
between rooms and their room concepts and results in physical rooms having a
quality that specifies the room concept it may support owing to its constituting
objects (or in fact the functions that the objects are indicating). This physical
room quality also resembles the concept of a so-called niche [2, 19]. Figure 1
illustrates the described ontological concepts and their relations. The dashed
lines are indicating that there might be other concepts in the hierarchy between
DOLCE’s concepts and the domain ontology concepts, however, our application
will subsume the domain concepts directly under DOLCE’s.

This domain ontology design facilitates the representation of our applica-
tion concern though the supported room concepts of a physical room cannot be
classified uniquely even in reality. Imagine a room having a table with chairs
surrounded and some pictures on the walls or the like. Without further informa-
tion it may serve as a dining room, a seminar room, a day room, or all of them
as the occurring objects do not give much indication to possible actions that
can be performed in this room. In lieu of exactly determining the supported
room concepts the application is instead able to indicate them with a certain
probability degree. Hence, uncertain factors also need to be represented in our
domain ontology. In fact, we integrate belief values of the Dempster-Shafer the-
ory for room concepts’ indications. We will introduce this theory in the next
section and the integration subsequently.

3 Dempster-Shafer Theory

The Dempster-Shafer theory [18] provides the representation and analysis of
uncertain knowledge and a method for evidential reasoning. It was originally
developed as an enhancement of probabilistic theory, but instead of assigning
probabilities to propositions, degrees of belief are assigned and the uncertain
knowledge is represented by a Belief function.

Belief can be assigned not only to single propositions but to sets of propo-
sition. All proposition are gathered in the frame of discernment Θ, which is
named after its epistemic nature, as it acquires “its meaning from what we
know or think we know; the distinctions that it embodies will be embedded
within the matrix of our language and its associated conceptual structures and
will depend on those structures for whatever accuracy and meaningfulness they
possess”[18]. The belief of the smallest subsets of Θ is generated by the basic
probability assignment function
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m : 2Θ → [0, 1].

To calculate the total belief of a subset of Θ, the basic probabilities of all
proper subsets have to be summed in a Belief function

Bel(A) =
∑

B⊂A

m(B).

Different Belief functions that relate to the same frame of discernment but
derive from distinct bodies of evidence can be combined by using Dempster’s
Rule of Combination, which is a belief function based on the combined evidences
for computing their orthogonal sum. For the combination of different belief
this function ((· · · (Bel1⊕Bel2) · · ·)⊕Beln−1) · · ·Beln combines the belief Bel1,
..., Beln pairwise. For instance, if we have the result of two analyses from
distinct points of view of the room, both indicating that the room supports the
room concept “office”; viewpoint A with an evidence of 0.7, viewpoint B with
an evidence of 0.9. Then we can combine both as shown in Table 1. Hence, the
total evidence for the room concept “office” is 0.97 (the sum of each supporting
evidence). For a more detailed presentation of Dempster’s Rule, we refer the
reader to [18], chapter 3, §1.

Table 1: Example of using Dempster’s Rule of Evidence for combining different
evidences for the room concept “office” from viewpoint A and B

A: “Office” (0.7) A: Θ (0.3)

B: “Office” (0.9) 0.63 0.27
B: Θ (0.1) 0.07 0.03

A major advantage of the Dempster-Shafer theory is its explicit representa-
tion of ignorance [4] as it makes a clear distinction between the lack of knowledge
and the assignment of degrees of belief to the negation of a proposition. Hence,
there is no need for the belief of a proposition and the belief of its negation to
sum up to 1 because remaining propositions will not be affected without explicit
assignments. In our application the belief that a physical room may be used
as an office for a certain degree does not determine the belief of other possible
room concepts, for instance, a study room (especially as the physical room may
be used as both room concepts if we employ them in our application). The use
of subjective belief of specialists is also a great benefit if no a priori probabilities
are available [16]. This provides the possibility of assigning beliefs to physical
room concepts depending on occurring objects without the investigation of a
vast number of empirically measured physical room data (see for further details
the exemplary implementation in section 5).

When applying Dempster’s Rule of Combination new belief can be combined
with the old one, which results in a belief update. This benefits our system’s
implementation depending on our application, which analyses one object after
another and can therefore calculate current belief distributions iteratively.
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It has been observed that “very little has been done to perform reasoning or
inferencing with information represented in terms of belief functions”[4]. Hence,
using a domain ontology, which already provides a reasoning strategy in its
structure to integrate this information seems to be a promising suggestion.

Although a disadvantage of the Dempster-Shafer theory is its computational
complexity, simplification algorithms have been developed [1, 10] that restrict
the frame of discernment to a hierarchical structure, which is already conformant
with an ontological structure.

Besides the incidental relation between the frame of discernment’s epistemic
slope and our cognitively assigned room concepts that rely on linguistic expres-
sions, the reasons mentioned above confirm the adequacy of using Dempster-
Shafer’s Belief functions for the representation of uncertain knowledge for the
room concepts in order to integrate them into an ontology. This integration will
be discussed in the next section.

4 Combination of Domain Ontology and
Dempster-Shafer Theory

As we have now illustrated the need for both the representation of ontological
knowledge as well as Dempster-Shafer belief, we will introduce our approach to
integrate belief values of the Dempster-Shafer theory into our developed domain
ontology.

The clear separation between physical rooms and abstract room concepts
turns out to be not only a precise modeling of the relations between rooms and
their room concepts but also a sophisticated foundation for the combination of
an ontology and the Dempster-Shafer theory. This allows us to assign belief
values to the quale values of the quality that a physical room supports a room
concept. This is illustrated in Figure 2: Room Concept Quality can have more
than just one quale, which are in turn provided with an additional degree of
evidence of the Dempster-Shafer theory, namely a belief value between 0 and 1.

When a physical room with its constituting objects is instantiated, the room
can have several qualities that relate it to particular room concepts with a
specific degree of evidence. In case of new information about the room concepts
the evidences can be updated by using Dempsters Rule of Combination4.

This domain ontology design is characterised by particular criteria: First,
rooms are represented independently from the room concepts they support and
they are uniquely distinguished by their physical dimensions and properties.
For instance, if the furniture of a room is removed from the room it will still
retain its identity, only its room concept qualities may change. Similarly, rooms
are constituted by their objects that are positioned in them and their unique
character is not depending on them. Second, the constellation of the consti-
tuting objects suggests possible functions that can be performed in the rooms

4Note: For simplicity we are currently just classifying single concepts. Therefore, we can
equate the belief for single propositions (basic probability assignment) with sets of propositions
(Belief function).
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Figure 2: Integrating evidence values into domain ontology

and depending on these functional aspects, possible cognitively assigned room
concepts can be derived. Third, the quality that a room may support a certain
room concept is specified by a belief value with regard to functions that the
constituting objects indicate or not.

Based on this formal representation, we have developed a visual room con-
cept classification system, which is introduced in the next section.

5 Room Concept Recognition System

In our application, the room concept classification is incorporated into a cogni-
tive vision system [17] that analyses and classifies an individual object that is
displayed in a 2D-image. This hybrid system performs saccadic eye movements
on the image and classifies the represented object after performing a supervised
learning phase. We have extended this system so that it can analyse possible
room concepts of a given input image by reasoning over the extracted and clas-
sified individual objects in the image. As we do not want to consider concrete
segmentation algorithms yet, we have created exemplary scenes on the basis of
real pictures, in which each single object has its own gray value. We also do not
allow overlapping or partially hidden objects yet.

The analysis of a complex scene composed of several objects is divided into
two processes: On a higher level the system performs eye movements on the
whole scene stopping at each fixation point. On a lower level it extracts the
object, which is located at each fixation point, from the complete scene and
classifies it by performing eye movements solely on this object depending on a
prior learning phase. After classifying the single object the system returns to
the higher level and resumes eye movement on the complete scene as illustrated
in Figure 3. This split between the higher and lower level of eye movements
is based on the assumption resulting from experimental results [11, 21] that
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Figure 3: Two-level process of eye movements analysis including the use of
ontological and uncertain knowledge

humans tend to recognize single objects and make conclusions about the scene
on a more abstract level than pure visual recognition.

For an illustrative test phase, we used a domain of university building rooms.
Available room concepts are Kitchen, Classroom, Lecture Hall, Office, and Lab-
oratory. As the system is instructed to identify them from a given input scene
with a certain degree of evidence and all room concepts are pairwise distinct in
our modelling, the system uses Demster’s Rule of Combination of singleton hy-
potheses as described in [10]. According to the visual analysis of one object after
the other, we compute the respective beliefs of each room concept iteratively
after every single object classification. This is primarily done for performance,
to get a first result of a possible room concept as soon as possible.

The example of a scene analysis that demonstrates the systems behaviour is
shown in Figure 4. The physical room scene5 is displayed in the upper left of
the window, in which arrows indicate performed eye movements on the higher
level. Analysed single objects are shown in the main frame, which shows the
system’s object classification for single objects (compare [17]). Results from
domain ontology requests are given at the bottom.

In our example, two specialists have assigned their belief values for prototyp-
ical room scenes that support the respective room concepts. Their specifications
generally tend to assign more than one room concept. In case of the analysed
room scene, shown in the upper left of Figure 4, the average assignments for
room concepts are Office (with an evidence of 0.75) and Laboratory (0.05).

First, the system performs eye movements on the higher level on the complete

5The images have been abstracted from original pictures taken in university buildings for
computational simplicity.
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Figure 4: Analysis of room concept with four classified objects
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scene. Beginning at the first fixation, it extracts the object in the image at the
corresponding coordinates. This extraction is done on the basis of the respective
gray value at this point. Then, the system classifies the extracted object by
performing eye movements on the lower level, which is already described in [17].
The result of the classification is passed to the ontology including the request:
what kind of room concepts are supported by physical rooms that consists of
the (so far) classified objects? In this example, the first classified object was
a desk (see Figure 4, fourth row (object 1) of the table at the bottom of the
window).

The instances resulting from the specialists’ assignments about physical
rooms that agree with the analysed constituting object are returned and com-
bined by using Dempsters Rule of Combination as described in section 3. In this
case we get the following results for possible room concepts of the current scene
given the respective belief values in parentheses: Laboratory (0.999), Lecture
Hall (0.999), Office (0.999), Classroom (0.999), Kitchen (0.998). The system
continues performing its higher level eye movement and extracts and analyses
the object in the image at the next fixation point. In the example shown in
Figure 4 the analysis shows a sound result of the room supporting the con-
cepts Office (0.99) and Laboratory (0.297) after four steps with respect to the
experimental rating of the specialists.

6 Conclusions

In this paper we have introduced a first prototype for integrating uncertain
knowledge into ontological knowledge. However, little work has been done
on integrating uncertain knowledge into ontologies as yet. Although two ap-
proaches tried to combine Bayesian probabilities [6] or Fuzzy Logic [15] with
ontologies, both approaches are more interested in the technical issues concern-
ing this combination than their applicability. In this paper we have emphasised
the motivation of our decision influenced by the need of a real world application
to represent both ontological and uncertain knowledge jointly.

As the structure of our domain ontology evolves from an ontology library we
hope to avoid the commonly arising difficulties for coherence, re-use, mapping
and extensibility. Still it is up to future work to determine whether the belief
values introduced in our domain ontology are also applicable to similar niche
concepts. It might also be necessary for consistency to define an additional
quality that specifies whether a quality may have several quales with additional
evidences.

Also some computational issues will be investigated further: On the one
hand, an automatisation for quality concepts that include an evidence quality
value, like modeling a “meta-class”, will be considered. On the other, the calcu-
lation of sets of room concepts for a physical room instead of merely calculating
single hypotheses will be integrated as this is one of the major advantages of
the Dempster-Shafer theory.
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