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Introduction to Data Mining

The Data Explosion

Modern computer systems are accumulating data at an almost unimaginable
rate and from a very wide variety of sources: from point-of-sale machines in the
high street to machines logging every cheque clearance, bank cash withdrawal
and credit card transaction, to Earth observation satellites in space.

Some examples will serve to give an indication of the volumes of data in-
volved:

— The current NASA Earth observation satellites generate a terabyte (i.e. 10°
bytes) of data every day. This is more than the total amount of data ever
transmitted by all previous observation satellites.

— The Human Genome project is storing thousands of bytes for each of several
billion genetic bases.

— As long ago as 1990, the US Census collected over a million million bytes of
data.

— Many companies maintain large Data Warehouses of customer transactions.
A fairly small data warehouse might contain more than a hundred million
transactions.

There are vast amounts of data recorded every day on automatic recording
devices, such as credit card transaction files and web logs, as well as non-
symbolic data such as CCTV recordings.

Alongside advances in storage technology, which increasingly make it pos-
sible to store such vast amounts of data at relatively low cost whether in com-
mercial data warehouses, scientific research laboratories or elsewhere, has come
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a growing realisation that such data contains buried within it knowledge that
can be critical to a company’s growth or decline, knowledge that could lead
to important discoveries in science, knowledge that could enable us accurately
to predict the weather and natural disasters, knowledge that could enable us
to identify the causes of and possible cures for lethal illnesses, knowledge that
could literally mean the difference between life and death. Yet the huge volumes
involved mean that most of this data is merely stored—mnever to be examined
in more than the most superficial way, if at all. It has rightly been said that
the world is becoming ‘data rich but knowledge poor’.

Machine learning technology, some of it very long established, has the po-
tential to solve the problem of the tidal wave of data that is flooding around
organisations, governments and individuals.

Knowledge Discovery
Knowledge Discovery has been defined as the ‘non-trivial extraction of im-

plicit, previously unknown and potentially useful information from data’. It is
a process of which data mining forms just one part, albeit a central one.

Data Sources

Prepared
Data Patterns
s A

— | O

Data Store

——

h 4
A
o

L — Knowledge

w0

I I
Integration Selection & Data Interpretation
Preprocessing Mining & Assimilation

DLOLC

Figure 1 The Knowledge Discovery Process

Figure 1 shows a slightly idealised version of the complete knowledge dis-
covery process.

Data comes in, possibly from many sources. It is integrated and placed
in some common data store. Part of it is then taken and pre-processed into a
standard format. This ‘prepared data’ is then passed to a data mining algorithm
which produces an output in the form of rules or some other kind of ‘patterns’.
These are then interpreted to give—and this is the Holy Grail for knowledge
discovery—new and potentially useful knowledge.
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This brief description makes it clear that although the data mining algo-
rithms, which are the principal subject of this book, are central to knowledge
discovery they are not the whole story. The pre-processing of the data and the
interpretation (as opposed to the blind use) of the results are both of great
importance. They are skilled tasks that are far more of an art (or a skill learnt
from experience) than an exact science. Although they will both be touched on
in this book, the algorithms of the data mining stage of knowledge discovery
will be its prime concern.

Applications of Data Mining

There is a rapidly growing body of successful applications in a wide range of
areas as diverse as:

analysis of organic compounds
— automatic abstracting

credit card fraud detection

electric load prediction

— financial forecasting

medical diagnosis

— predicting share of television audiences

— product design

— real estate valuation

— targeted marketing

— thermal power plant optimisation

— toxic hazard analysis

— weather forecasting

and many more. Some examples of applications (potential or actual) are:

— a supermarket chain mines its customer transactions data to optimise tar-
geting of high value customers

— a credit card company can use its data warehouse of customer transactions
for fraud detection

— a major hotel chain can use survey databases to identify attributes of a
‘high-value’ prospect
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— predicting the probability of default for consumer loan applications by im-
proving the ability to predict bad loans

— reducing fabrication flaws in VLSI chips

— data mining systems can sift through vast quantities of data collected during
the semiconductor fabrication process to identify conditions that are causing
yield problems

— predicting audience share for television programmes, allowing television ex-
ecutives to arrange show schedules to maximise market share and increase
advertising revenues

— predicting the probability that a cancer patient will respond to chemotherapy,
thus reducing health-care costs without affecting quality of care.

Applications can be divided into four main types: classification, numerical
prediction, association and clustering. Each of these is explained briefly below.
However first we need to distinguish between two types of data.

Labelled and Unlabelled Data

In general we have a dataset of examples (called instances), each of which
comprises the values of a number of variables, which in data mining are often
called attributes. There are two types of data, which are treated in radically
different ways.

For the first type there is a specially designated attribute and the aim is to
use the data given to predict the value of that attribute for instances that have
not yet been seen. Data of this kind is called labelled. Data mining using labelled
data is known as supervised learning. If the designated attribute is categorical,
i.e. it must take one of a number of distinct values such as ‘very good’, ‘good’
or ‘poor’, or (in an object recognition application) ‘car’, ‘bicycle’, ‘person’,
‘bus’ or ‘taxi’ the task is called classification. If the designated attribute is
numerical, e.g. the expected sale price of a house or the opening price of a
share on tomorrow’s stock market, the task is called regression.

Data that does not have any specially designated attribute is called un-
labelled. Data mining of unlabelled data is known as unsupervised learning.
Here the aim is simply to extract the most information we can from the data
available.
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Supervised Learning: Classification

Classification is one of the most common applications for data mining. It corre-
sponds to a task that occurs frequently in everyday life. For example, a hospital
may want to classify medical patients into those who are at high, medium or
low risk of acquiring a certain illness, an opinion polling company may wish to
classify people interviewed into those who are likely to vote for each of a num-
ber of political parties or are undecided, or we may wish to classify a student
project as distinction, merit, pass or fail.

This example shows a typical situation (Figure 2). We have a dataset in
the form of a table containing students’ grades on five subjects (the values of
attributes SoftEng, ARIN, HCI, CSA and Project) and their overall degree
classifications. The row of dots indicates that a number of rows have been
omitted in the interests of simplicity. We want to find some way of predicting
the classification for other students given only their grade ‘profiles’.

SoftEng | ARIN HCI CSA Project Class
A B A B B Second
A B B B B Second
B A A B A Second
A A A A B First
A A B B A First
B A A B B Second
A A B A B First

Figure 2 Degree Classification Data

There are several ways we can do this, including the following.

Nearest Neighbour Matching. This method relies on identifying (say) the five

examples that are ‘closest’ in some sense to an unclassified one. If the five
‘nearest neighbours’ have grades Second, First, Second, Second and Second
we might reasonably conclude that the new instance should be classified as
‘Second’.

Classification Rules. We look for rules that we can use to predict the classi-
fication of an unseen instance, for example:

IF SoftEng = A AND Project = A THEN Class = First
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IF SoftEng = A AND Project = B AND ARIN = B THEN Class = Second
IF SoftEng = B THEN Class = Second

Classification Tree. One way of generating classification rules is via an inter-
mediate tree-like structure called a classification tree or a decision tree.
Figure 3 shows a possible decision tree corresponding to the degree classi-
fication data.

SoftEng

A B

Project SECOND

A B

FIRST ARIN

P
CSA SECOND
A B

FIRST SECOND

Figure 3 Decision Tree for Degree Classification Data

Supervised Learning: Numerical Prediction

Classification is one form of prediction, where the value to be predicted is a
label. Numerical prediction (often called regression) is another. In this case we
wish to predict a numerical value, such as a company’s profits or a share price.

A very popular way of doing this is to use a Neural Network as shown in
Figure 4 (often called by the simplified name Neural Net).

This is a complex modelling technique based on a model of a human neuron.
A neural net is given a set of inputs and is used to predict one or more outputs.

Although neural networks are an important technique of data mining, they
are complex enough to justify a book of their own and will not be discussed
further here. There are several good textbooks on neural metworks available,
some of which are listed in Appendix C.
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Input Hidden Output
Layer Layer Layer

Input # 1

Input # 2

Input # 3

Input # 4

Figure 4 A Neural Network

Unsupervised Learning: Association Rules

Sometimes we wish to use a training set to find any relationship that exists
amongst the values of variables, generally in the form of rules known as associ-
ation rules. There are many possible association rules derivable from any given
dataset, most of them of little or no value, so it is usual for association rules
to be stated with some additional information indicating how reliable they are,
for example:

IF variable_1 > 85 and switch_6 = open
THEN variable_ 23 < 47.5 and switch_8 = closed (probability = 0.8)

A common form of this type of application is called ‘market basket analysis’.
If we know the purchases made by all the customers at a store for say a week,
we may be able to find relationships that will help the store market its products
more effectively in the future. For example, the rule

IF cheese AND milk THEN bread (probability = 0.7)

indicates that 70% of the customers who buy cheese and milk also buy bread, so
it would be sensible to move the bread closer to the cheese and milk counter, if
customer convenience were the prime concern, or to separate them to encourage
impulse buying of other products if profit were more important.
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Unsupervised Learning: Clustering

Clustering algorithms examine data to find groups of items that are similar. For
example, an insurance company might group customers according to income,
age, types of policy purchased or prior claims experience. In a fault diagnosis
application, electrical faults might be grouped according to the values of certain
key variables (Figure 5).
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Figure 5 Clustering of Data

About This Book

This book is designed to be suitable for an introductory course at either un-
dergraduate or masters level. It can be used as a textbook for a taught unit in
a degree programme on potentially any of a wide range of subjects including
Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioin-
formatics and Forensic Science. It is also suitable for use as a self-study book for
those in technical or management positions who wish to gain an understanding
of the subject that goes beyond the superficial. It goes well beyond the gen-
eralities of many introductory books on Data Mining but—unlike many other
books—you will not need a degree and/or considerable fluency in Mathematics
to understand it.

Mathematics is a language in which it is possible to express very complex
and sophisticated ideas. Unfortunately it is a language in which 99% of the
human race is not fluent, although many people have some basic knowledge of
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it from early experiences (not always pleasant ones) at school. The author is a
former Mathematician (‘recovering Mathematician’ might be a more accurate
term) who now prefers to communicate in plain English wherever possible and
believes that a good example is worth a hundred mathematical symbols.

Unfortunately it has not been possible to bury mathematical notation en-
tirely. A ‘refresher’ of everything you need to know to begin studying the book
is given in Appendix A. It should be quite familiar to anyone who has studied
Mathematics at school level. Everything else will be explained as we come to
it. If you have difficulty following the notation in some places, you can usually
safely ignore it, just concentrating on the results and the detailed examples
given. For those who would like to pursue the mathematical underpinnings
of Data Mining in greater depth, a number of additional texts are listed in
Appendix C.

No introductory book on Data Mining can take you to research level in the
subject—the days for that have long passed. This book will give you a good
grounding in the principal techniques without attempting to show you this
year’s latest fashions, which in most cases will have been superseded by the
time the book gets into your hands. Once you know the basic methods, there
are many sources you can use to find the latest developments in the field. Some
of these are listed in Appendix C.

The other appendices include information about the main datasets used in
the examples in the book, many of which are of interest in their own right and
are readily available for use in your own projects if you wish, and a glossary of
the technical terms used in the book.

Self-assessment Exercises are included for each chapter to enable you to
check your understanding. Specimen solutions are given in Appendix E.
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