Skip to main content

Time in Anatomy

  • Chapter
  • 1690 Accesses

Part of the book series: Computational Biology ((COBO,volume 6))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Aitken. Formalising concepts of species, sex and developmental stage in anatomical ontologies. Bioinformatics, 21:2773–2779, 2005.

    Article  Google Scholar 

  2. J.F. Allen and G. Ferguson. Actions and events in interval temporal logic. J. Logic and Computation, 4(5):513–579, 1994. 11 Time in Anatomy 245

    Article  MathSciNet  Google Scholar 

  3. C.G. Arques, R. Doohan, J. Sharpe, and M. Torres. Cell tracing reveals a dorsoventral lineage restriction plane in the mouse limb bud mesenchyme. Development, 134:3713– 3722, 2007.

    Article  Google Scholar 

  4. A. Aulehla and B. Herrmann. Segmentation in vertebrates: clock and gradient finally joined. Genes and Dev., 18:2060–2067, 2004.

    Article  Google Scholar 

  5. J.B.L. Bard, M.H. Kaufman, C. Dubreuil, R.M. Brune, A. Burger, R.A. Baldock, and D.R. Davidson. An internet-accessible database of mouse developmental anatomy based on a systematic nomenclature. Mechanisms of Development, 74:111–120, 1998.

    Article  Google Scholar 

  6. J. De Beule. Creating temporal categories for an ontology of time. In R.Verbrugge, N. Taatgen, and L. Schomaker, editors, BNAIC-04, pages 107–114, 2004.

    Google Scholar 

  7. T. Bittner. Approximate qualitative temporal reasoning. Annals Math. Artificial. Intelligence, 36:39–80, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  8. H. Bolouri and E.H. Davidson. Modeling dna sequence-based cis-regulatory gene networks. Develop. Biol., 246:2–13, 2002.

    Article  Google Scholar 

  9. M. Brochhausen. The derives from relation in biomedical ontologies. In MIE 2006 Studies in Health Technology and Informatics, volume 124, 2006.

    Google Scholar 

  10. A. Burger, D. Davidson, and R. Baldock. Formalization of mouse embryo anatomy. Bioinformatics, 20:259–267, 2004.

    Article  MATH  Google Scholar 

  11. L. Calzone, N. Chabrier-Rivier, F. Fages, L. Gentils, and S. Soliman. Machine learning bio-molecular interactions from temporal logic properties. In G. Plotkin, editor, Proceedings of Computational Methods in Systems Biology (CMSB), 2005.

    Google Scholar 

  12. L. Chittaro and A. Montanari. Temporal representation and reasoning in artificial intelligence: issues and approaches. Baltzer Journals, July 2 2002.

    Google Scholar 

  13. R.L. Chow and R.A.Lang. Early eye development in vertebrates. Annu. Rev. Cell Dev. Biol., 17:255–296, 2001.

    Article  Google Scholar 

  14. D.L. Cook, J.L.V. Mejino, and C. Rosse. Evolution of a foundational model of phisiology: symbolic representation for functional bioinformatics. In M. Fieschi et al, editor, MEDINFO, Amseterdam, 2004. IOS Press.

    Google Scholar 

  15. G. Von Dassow, E. Meir, E.M. Munro, and G.M. Odell. The segment polarity network is a robust developmental module. Nature, 406:188–192, 2000.

    Article  Google Scholar 

  16. R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelligence, 49:61–95, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  17. G.R. Dressler. The cellular basis of kidney development. Annu. Rev. Cell Dev. Biol., 22:509–529, 2006.

    Article  Google Scholar 

  18. J. Dubrulle and O. Pourqui’e. Coupling segmentation to axis formation. Development, 131:5783–5793, 2004.

    Article  Google Scholar 

  19. P. Ducy, T.Schinke, and G. Karsenty. The osteoblast: a sophisticated fibroblast under central surveillance. Science, 289:1501–1504, 2000.

    Article  Google Scholar 

  20. P.L. Williams et al. Gray’s Anatomy. Churchill Livingstone, London, 38th edition, 1995.

    Google Scholar 

  21. F. Fages. From syntax to semantics in systems biology towards automated reasoning tools. In C. Priami et al, editor, Trans. On Comput. Syst. Biol. IV, number 3939 in LNBI, pages 68–70, 2006.

    Google Scholar 

  22. J.B. Gross, J. Hanken, E. Oglesby, and N. Marsh-Armstrong. Use of a ROSA26:GFP transgenic line for long-term xenopus fate-mapping studies. J. Anat., 209:401–413, 2006.

    Article  Google Scholar 

  23. P. Haas and D. Gilmour. chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. Developmental Cell, 10:673–680, 2006.

    Article  Google Scholar 

  24. A-K. Hadjantonakis and V.E. Papiaoannou. Dynamic in vivo imaging and cell tracking using a fluorescent protein fusion in mice. BMC Biotechnology, 4(33), 2004. 246 Duncan Davidson

    Google Scholar 

  25. M.A. Haendel, F. Neuhaus, D.S. Osumi-Sutherland, P.M. Mabee, J.L.V. Mejino Jr., C.J. Mungal, and B.Smith. Caro - the common anatomy reference ontology. In A. Burger, D. Davidson, and R. Baldock, editors, Anatomy Ontologies for Bioinformatics: Principles and Practice, New York, In press. Springer.

    Google Scholar 

  26. V. Hamburger and H.L. Hamilton. A series of normal stages in the development of the chick embryo. J. Morph., 88:49–92, 1951.

    Article  Google Scholar 

  27. R.G. Harrison. Harrison stages and description of the normal development of the spotted salamander, ambysoma punctatum (linn). In S. Willens, editor, Organisation of the embryo, pages 44–66. Yale University Press, 1969.

    Google Scholar 

  28. T.F. Hayamizu, M. Mangan, J.P. Corradi, J.A. Kadin, and M. Ringwald. The adult mouse anatomical dictionary: a tool for annotating and integrating data. Genome Biol., 6(3):R29, 2005.

    Article  Google Scholar 

  29. Y. Hirose, Z.M. Varga, H. Kondoh, and M. Furutani-Seiki. Single cell lineage and regionalisation of cell populations during medaka neurulation. Development, 131:2553–2563, 2004.

    Article  Google Scholar 

  30. J.R. Hobbs and J. Pustejovsky. Annotating and reasoning about time and events. In Proceedings of AAAI Spring Symposium on Logical Formalizations of Commonsense Reasoning, March 2003.

    Google Scholar 

  31. M. Hucka, A. Finney, and H.M. Sauro et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics, 19:524–531, 2003. See also http://www.sbml.org/for more recent updates.

    Google Scholar 

  32. T. Iwamatsu. Stages of normal development in the medaka orysias latipes. Zool. Sci., 11:825–839, 1994.

    Google Scholar 

  33. C.B. Kimmel, W.W. Ballard, S.R. Kimmel, B. Ullmann, and T.F. Schilling. Stages of embryonic development of the zebrafish. Dev. Dyn., 203:253–310, 1995.

    Google Scholar 

  34. H. Kitano, A. Funahashi, Y.Matsuoka, and K. Oda. Using process diagrams for the graphical representation of biological networks. Nature Biotechnology, 23:961–966, 2005.

    Article  Google Scholar 

  35. W. Kritz and L. Bankir. A standard nomenclature for structures of the kidney. Kidney Int., 33:1–7, 1988.

    Article  Google Scholar 

  36. R.Y.N. Lee and P.W Sternberg. Building a cell and anatomy ontology of caenorhabditis elegans. Comparartive and Functional Genomics, 4:121–126, 2003.

    Article  Google Scholar 

  37. M.H. Little, J. Brennan, K. Georgas, J.A. Davies, D.R. Davidson, R.A. Baldock, A. Beverdam, J.F. Bertram, and B. Capel. A high-resolution anatomical ontology of the developing murine genitourinary tract. Gene Expression Patterns, 7:680–699, 2007.

    Article  Google Scholar 

  38. W. Ma, L. Lai, Q. Ouyang, and C.Tang. Robustness and modular design of the drosophila segment polarity network. Molecular Systems Biology, 2:70, 2006.

    Article  Google Scholar 

  39. S.C. Manolagas. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocrine Rev., 21:115–137, 2000.

    Article  Google Scholar 

  40. M.J. Martin and J.C Buckland-Wright. A novel mathematical model identifies potential factors regulating bone apposition. Calcif. Tissue Int., 77:250–260, 2005.

    Article  Google Scholar 

  41. J.L.V. Mejino, A.V. Agoncillo, K.L. Rickard, and C. Rosse. Representing complexity in part-whole relationships within the foundational model of anatomy. In Proc AMIA Symp, pages 450–454, 2003.

    Google Scholar 

  42. P.D. Nieuwkoop and J. Faber. Normal Table of Xenopus laevis.3rd edition, 1994.

    Google Scholar 

  43. Y.J. Passamaneck, A.DiGregorio, V.E. Papaioannou, and A-K. Hadjantonakis. Live imaging of fluorescent proteins in chordate embryos: From ascidians to mice. Microscopy Research and Technique, 69:160–167, 2006. 11 Time in Anatomy 247

    Article  Google Scholar 

  44. M. Peleg, I. Yeh, and R.B. Altman. Modelling biological processes using workflow and petri net models. Bioinformatics, 18:825–837, 2002.

    Article  Google Scholar 

  45. C. Rosse and J.V.L. Mejino. A reference ontology for biomedical informatics: the foundational model of anatomy. J Biomed Inform., 36:478–500, 2003.

    Article  Google Scholar 

  46. K. Saha and D.V. Schaffer. Signal dynamics in sonic hedgehog tissue patterning. Development, 133:889–900, 2006.

    Article  Google Scholar 

  47. B. Smith, W. Ceusters, B. Klagges, J. Köhler, A. Kumar, J. Lomax, C. Mungall, F. Neuhaus, A. Rector, and C. Rosse. Relations in biomedical ontologies. Genome Biology, 6(5):r46, 2005.

    Article  Google Scholar 

  48. L. Strömbäck and P. Lambrix. Prepresentations of molecular pathways: an evaluation of SBML, PSI MI and BioPAX. Bioinformatics, 21:4401–4407, 2005.

    Article  Google Scholar 

  49. S.L. Teitelbaum and F.P Ross. Genetic regulation of osteoclast development and function. Nature Reviews Genetics, 4:638–649, 2003.

    Article  Google Scholar 

  50. K. Theiler. The House Mouse: Atlas of Embryonic Development.Springer-Verlag, New York, 1989.

    Google Scholar 

  51. P. Tomancak, A. Beaton, R. Weiszmann, E. Kwan, S.Q. Shu, and S.E. Lewis. Systematic determination of patterns of gene expression during drosophila embryogenesis. Genome Biology, 3(12), 2002.

    Google Scholar 

  52. M. Vilain, H. Kautz, and P.van Beek. Constraint propagation algorithms for temporal reasoning: a revised report. In Readings about qualitative reasoniung about physical systems., 1989. cs.rochester.edu.

    Google Scholar 

  53. N. Wanek, K. Muneoka, G. Holler-dinsmore, R. Burton, and S.V. Bryant. A staging system for mouse limb development. J. Exp. Zool., 249:41–49, 1989.

    Article  Google Scholar 

  54. C.J. Wong and R.A. Liversage. Limb developmental stages of the newt notophthalmus viridescens. Int. J. Dev. Biol., 49:375–389, 2005.

    Article  Google Scholar 

Download references

Authors

Editor information

Albert Burger BSc, MSc, PhD Duncan Davidson BSc, PhD Richard Baldock BSc, PhD

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Albert Burger, Duncan Davidson, Richard Baldock

About this chapter

Cite this chapter

Davidson, D. (2008). Time in Anatomy. In: Burger, A., Davidson, D., Baldock, R. (eds) Anatomy Ontologies for Bioinformatics. Computational Biology, vol 6. Springer, London. https://doi.org/10.1007/978-1-84628-885-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-885-2_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-884-5

  • Online ISBN: 978-1-84628-885-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics