
Distributed Cognition and Joint Activity in

Computer-System Administration

Paul P. Maglio, Eser Kandogan, Eben Haber

IBM Almaden Research Center

Troubleshooting large computer systems is often highly collaborative. Be-

cause these systems consist of complex infrastructures with many interde-

pendent components, expertise is spread across people and organizations.
Those who administer such systems are faced with cognitive and social

challenges, including the establishment of common ground and coordina-

tion of attention, as they troubleshoot in collaboration with peers, technical
support, and software application developers. We take a distributed cogni-

tion approach to interpreting a specific instance of problem-solving in ad-

ministering a web-based system, examining the movement of representa-
tional state across media in a single system administrator's environment.

We also apply the idea of language use as joint activity to understand how

discourse attributes affect what is accomplished collaboratively. Our
analysis focuses on information flow among participants and other

sources, and how these affect what information is attended to, transmitted,

and used.

1 Introduction

Millions of users of online services such as banking and shopping rely on

instant transactions, round-the-clock access, and foolproof record keeping.

The computer system infrastructures needed to support such applications
consist of diverse components, such as database management systems, web

servers, and application servers, all of which must work together in com-

plex ways to deliver fault tolerant, scalable, secure applications. Yet with
such systems increasing in both size and complexity, manageability is

quickly becoming a significant obstacle to system administration: Admin-

istrators who install, configure, maintain, and support such systems must
handle larger and more complex tasks (Anderson 2002; Woods 1988).

2 Paul P. Maglio, Eser Kandogan, Eben Haber

Large-scale systems contain many interdependent components, often

from different suppliers, that are not always designed to work together.

Expertise and responsibility for different components is typically spread
across people and organizations. Administrators are faced with daunting

cognitive and social challenges. Complexity and scale are such that admin-

istering a complete system is usually beyond the abilities of a single per-
son, making collaboration among team members and outside experts cru-

cial to completing many tasks, especially time-critical tasks such as

troubleshooting. As a result, administrators have developed many heuris-
tics for problem-solving and many practices for collaborating with others

to do their jobs effectively.

Collaborative troubleshooting involves coordinating activity and infor-

mation from people and other sources. In this paper, we take a distributed

cognition approach (Hutchins 1995) to understand problem-solving in sys-

tem administration, focusing on issues of trust and its relationship to the

management of attention. Distributed cognition treats certain arrange-

ments of people and artifacts as cognitive systems, effectively computing

functions by transmitting representations (e.g., language, computer com-

mands) across media (e.g., air, computer screens). The idea is that the
cognitive computation can be (partially) understood by tracking propaga-

tion of representations in this way.

We combine distributed cognition with the joint activity theory of lan-
guage use (Clark 1996) to interpret the way discourse attributes affect

problem-solving in system administration. On the joint activity view, peo-

ple use language to create and complete projects together, such as the pro-
ject of coming to a mutual understanding (e.g., agreeing on the cause of a

problem and its probable solution) or the project of accomplishing some

other task (e.g., following steps to enact problem resolution). An examina-
tion of language use as joint activity provides insight into why people in-

teract the way they do (see also Fairburn et al 1999).

In what follows, we examine the process of solving a single problem
that occurred during normal maintenance of a web-based system. This epi-

sode lasted two and a half hours and involved eight people using many dif-

ferent collaboration tools and resources. By tracking the movement of rep-

resentational state across media in one administrator's environment, and by

analyzing how joint projects are established, we examine how discourse at-

tributes and information flows affect what information is attended to,

transmitted, and used.

Distributed Cognition and Joint Activity in Computer-System Administration 3

2 Study

Our data come from field studies conducted to develop knowledge of

software system administrators’ culture, organization, collaboration, work

styles, problems, strategies, and tool use. Our overall goal is to improve

products, practices, and processes of administration. In the study dis-

cussed here, we observed administrators for five consecutive days in a

computer services group that hosts customer web applications. We used

several techniques to gather data, including surveys, observations, video

recording, formal and informal interviews, and material (hardcopy and

online) collection.

In this chapter, we detail one problem-solving episode, analyzing the in-

fluence of access to information and aspects of discourse on administra-

tors’ collaboration practices and problem-solving effectiveness. The de-

scriptions of agents, representations, and representational activities that

follow are restricted to this episode only. We first describe (a) some tech-

nical details of the task; (b) the people, computers, and information sources

involved; and (c) the kinds of representations that were used.

2.1 Task

A customer installation included a certain software product for managing
the flow of data between the public internet and the customer’s protected

internal network. This software had two parts, a player instance running

on a server in the public zone and a maestro instance running on a server
in the protected zone. Communication between player and maestro was

regulated by a network firewall (see Fig. 1). To handle additional traffic,

the customer requested that a second player instance be added in the public

zone (see Fig. 2). The task of adding a second player instance involved
creating the new player, configuring the maestro to allow the new player to

access certain resources, and configuring the network firewall to permit

communication between maestro and player. Network communication be-
tween these systems occurs over specific ports (represented by integer port

numbers) that must be set properly for both the sending and receiving in-

stances (e.g. maestro and player instance). Furthermore, the firewall pro-
vides security by only permitting communication in each direction over a

limited set of port numbers; these ports and their allowed directions are

specified in firewall rules.

4 Paul P. Maglio, Eser Kandogan, Eben Haber

2.2 People and Computers

Many individuals from many groups were involved in the problem-solving

episode. Primary actors included:

• our main administrator (hereafter, Admin),

• the project architect (Archi),

• technical support for the product (Tech), and

• Admin’s colleague who had access the same systems (Colle).

Less important contributors included Admin’s officemate, the customer

relationship manager, the project executive, a product developer (and Ar-

chi’s friend) , and Admin and Colle’s manager.

Systems that received, processed, and transmitted information during

the episode included:

• an internal server machine that ran the maestro application in the pro-

tected zone of the network,

Fig. 1. In the initial configuration, the maestro server communicates with a

single player instance through the firewall on ports 7234 (maestro to player)

and 7135 (player to maestro).

Distributed Cognition and Joint Activity in Computer-System Administration 5

Fig. 2. In the desired configuration, a new player instance (E1) communicates

with the maestro server through the firewall on ports 7137 (maestro to player)

and 7135 (player to maestro).

• an external server machine that ran the player instances in the public

zone,

• a firewall that regulated communication between internal and external

servers,

• the maestro process that regulated player access to protected resources,

• the existing default player process, and

• the new player process that the customer wanted added on the external

server.

2.3 Representations and Actions

As Admin and collaborators worked on the problem of adding a new

player instance to the external server, they used various media and tools

for interacting with each other and with the computer systems. Their

communication involved verbal exchanges face-to-face or over the phone,

and textual exchanges through email and instant messages.1 When inter-

acting with computer systems, administrators relied mainly on commands

1 Email and instant-messages are often used simultaneously. Email is persistent

and must be explicitly received. Instant messages “pop up” in a special win-

dow on the recipient’s screen.

6 Paul P. Maglio, Eser Kandogan, Eben Haber

typed directly into the system’s command line, a general human-computer

interface that requires the user to know precisely the names and parameters

of specific commands for the computer to execute. Command line users
are typically very experienced. Commands can control processes and ma-

chines, and can display state and configuration information.

Information representations included configuration files, log files, online
and paper instruction manuals, and port listings. There were separate con-

figuration files for each computer process, which included settings to spec-

ify communication port numbers. Likewise, each process had its own log
files that report errors and warnings that occur while the process is run-

ning.

We now turn to details of the problem-solving episode in which Admin

worked with many others and consulted many information sources to add a

new player instance to the external server.

3 Observations

We begin with an overview of the multi-hour problem-solving episode.

We then focus on several specific interactions that illustrate how con-

straints on propagation of representational state and how discourse attrib-

utes affected what information was attended to, transmitted, and used. All

observations were taken from Admin’s perspective.

3.1 Overview

Initially, Admin received an email message describing the steps required to

add a new player instance to the external server. These were generic in-

structions for completing the task. Admin had to substitute situation-

specific information at each step for successful execution. To start, Admin

needed to collect this specific information. Before our observation began,

Admin had sent an email request to the network team to modify the fire-

wall rules to permit communication over two ports: port 7137 from exter-

nal server to internal server, and port 7236 from internal server to external
server (see Fig. 3). Once the network team completed the job, Admin be-

gan to follow the rest of the instructions.

Distributed Cognition and Joint Activity in Computer-System Administration 7

Fig. 3. In the problematic configuration, a second player instance was added

(E1), but communication between maestro and the second player instance was

not properly established. The second instance can communicate with the maestro

server on port 7135 (player to maestro), but the maestro server cannot communi-

cate with the second player instance through port 7137 because 7137 was set up

to allow communication in the opposite direction (player to maestro rather than

maestro to player) only.

First, Admin copied from the email the command to create a new player

instance and pasted it onto the command line of the external server:

m_web create {instance} –m {internal-port}

He then proceeded to substitute “E1” for instance and “7137” for

internal-port by directly editing the text on the command line, re-

sulting in

m_web create E1 –m 7137

This paste-and-modify was typical of Admin’s style—whether the com-

mand was copied and pasted from email or from other sources—he would

substitute specific configuration information directly into the command

line.

Admin executed the command without any errors, resulting in the con-

figuration shown in Fig. 3. Unaware that anything was wrong, he then

8 Paul P. Maglio, Eser Kandogan, Eben Haber

copied from the email message a command meant to configure the maestro

server to permit the new player instance access to certain resources. When

he filled in the parameters and executed this command, the following error
appeared on his screen:

Cannot reach server: Error 1231A

At this point Admin appeared confused, probably for several reasons:

First, the error message was ambiguous. Admin was running a command

on maestro server to allow player access to certain resources located on yet

a third server. The error message, “Cannot reach server,” did not specify

which server could not be reached. Second, instructions and online docu-

mentation were not clear about the meaning of internal-port, defin-

ing it to be “intra-process communication port” without any mention of the

direction of the communication. Third, the error message was the result of

a problem created during initial player configuration, yet appeared later
during maestro configuration. When Admin created the player instance

(E1), no errors were indicated, so he assumed that the problem could not

have occurred then.

To try to understand the error, Admin engaged in phone, email, and in-

stant-message conversations with Archi, the application architect, and
Tech, the technical support person. As time passed and the problem re-

mained unresolved, Admin’s office-mate, colleague (Colle), and a devel-

oper friend of Archi’s all joined the conversation. At several points, the
customer relationship manager and the project executive requested updates

from Admin on the state of problem resolution.

During interaction among Admin, Archi, and Tech, Admin was in con-
trol of the systems, with Archi and Tech asking him for details of configu-

ration and system state, and instructing him to run commands or make con-

figuration changes. By contrast, Colle could access the systems directly,
so his work on the problem was more independent, reporting back to

Admin his findings and suggestions for a solution. In these conversations,

various representations of system state, including error numbers, configu-
ration file entries, and portions of log files, were exchanged over the tele-

phone, instant messages, and email. As information was transferred, it was

often transformed from abstract descriptions, such as internal-port,

to specific names and numbers, such as 7137, and vice versa.

Distributed Cognition and Joint Activity in Computer-System Administration 9

The problem was resolved after two and a half hours by Admin and

Colle. The core issue turned out to be a misunderstanding of the meaning

of internal-port, as specified when creating the new player instance.

The internal-port is used for communication from maestro to

player—that is, the port on which player “listens” for data from maestro.

Admin had originally believed that internal-port was used from

communication in the opposite direction: from player to maestro. Because

Admin had asked the network team to configure the firewall to allow
communication in the wrong direction, the problem was an inconsistancy

between the firewall rules and the player’s port specification. The solution

was either to change the firewall rules, or to change the player’s ports.

Admin eventually chose the latter solution (specifying the player’s in-

ternal-port as 7236 rather than 7137), as shown in Fig. 4.

Communication from all player instances to maestro was handled on a

single standard port (7135), which was specified in the player configura-

tion file as master-port. This specification was overlooked by Admin

(in part because it was located in a part of the configuration file very dis-

tant from internal-port). Admin had incorrectly believed that a dif-

ferent port number was needed for each player communicating with maes-

Fig. 4. In the final, working configuration, the maestro server communicates with

the second player instance on port 7236 (maestro to player).

10 Paul P. Maglio, Eser Kandogan, Eben Haber

Fig. 5. Throughout the hours of troubleshooting, at least eight different in-

dividuals or groups participated. Single solid lines represent communication

over the instant message channel; dashed lines represent communication

over the email channel; dotted-and-dashed lines represent communication

over the phone channel; and dotted lines represent communication via the

air, whether visual or auditory.

tro, and that port was specified by internal-port (e.g., E0). Admin

knew the original player used 7135, so he thought that the new instance

(e.g., E1) needed to use a different port, 7137, instead. In fact, maestro

has only a single master-port for receiving messages from all players.

At the center of the problem were specific transformations carried out

by people and computers on various representations of system state. The

various port labels internal-port and master-port do not inform

about the purpose of these ports. Certainly, they do not indicate the direc-

tion of communication (e.g., player-receiving-port would have

been a better label). Our observations of Admin’s interactions with the
manuals and instructions suggest that they were too vague to help him un-

derstand the system state. The time taken to resolve the issue was affected

by these transformations, as participants attempted to reach a common un-
derstanding of the semantics and syntax of system components and their

representations. Overall, eight different people or groups were involved in

these exchanges (see Fig. 5).

Distributed Cognition and Joint Activity in Computer-System
Administration 11

We now turn to three specific interactions in more detail. These relate

to problem diagnosis and problem resolution, illustrating how attributes of

communication between participants influence how representational state

propagates through the system and affects coordinated, joint activity.

3.2 Episode I: Do you have the manual?

After more than an hour of debugging by Admin and Archi failed to re-

solve the problem, Archi suggested a call to technical support. Admin was
dubious, remarking that in his past experience technical support’s solution

to most problems was to, “reinstall, reinstall” the software. With no other

option, however, Admin made the call and began to work with Tech, first
by telephone, and later over instant messaging. Nearly two hours into the

session, Tech and Admin exchanged the following messages [1:46:00]:2

Tech: Can you verify listen port 7234 or 7237 is

listening?3

At this point already Tech asked the right question that related to the

source of the problem: 7234 was the listen port for the default instance,
and 7137 was the listen port for the new instance (although Tech wrote

“7237” he likely meant “7137”), as specified in the first command Admin

executed (m_web create E1 –m 7137). Admin determined the listen ports us-
ing the command line, which displayed all listening ports on the external

server including ports 7137 and 7234 and about twenty others. To himself,

Admin muttered [1:46:35]:

Admin: 7137 and 7234. This is the problem! Huh. Oh, no wait!

Hmm, that should be fine.

Admin might have realized that 7137 should not be a listen port, but he
focused instead only on 7234 and filtered other information from the port

list when reporting to Tech [1:47:10]:

Admin: It is listening 7234…is it ok that it lis-

tens on the same port as the default in-

stance?

2 Timestamps in brackets indicate elapsed time from the beginning of the episode;

in this case, 1 hour, 46 minutes, and 0 seconds in.
3 Transcripts displayed in a fixed width font indicate communication via instant

messages; italics indicate voice.

12 Paul P. Maglio, Eser Kandogan, Eben Haber

Fig. 6. In Episode I, Admin had sole access to the computer systems, and all in-

formation and changes passed through him.

Tech responded negatively, which might have led Admin directly to the
solution [1:48:15]:

Tech: Don’t think so.

Tech: Do you have the manual?

Tech: I’m trying to find it... working from home

today.

But on seeing these messages, Admin spoke with Archi by phone

[1:49:20]:

Admin: You got to be kidding me! Oh God, this support guy is ask-

ing me for the manual.

Archi told Admin that he knew someone else who could help, and even-

tually brought a developer into the discussion.

It seems clear that at this point Admin lost faith in Tech. Yet just before

asking about the manual, Tech had asked a question that would, in retro-

spect, have quickly led to resolving the problem (about which port was lis-

tening where). As Fig. 6 shows, after [1:50] Tech continued to send a few

messages, but Admin only replied twice and then ceased communicating.

In fact, after one of Tech’s messages pointed out where to change the lis-

tening port for the new instance, and Admin responded verbally (to no

one) [1:58:25],

Distributed Cognition and Joint Activity in Computer-System
Administration 13

Admin: This guy is totally useless.

From this point on, Admin ignored Tech completely. The instant mes-

sage windows that contained the exchange with Tech became covered

over. Tech’s last message arrived after a long period of no communication

[2:13:00],

Tech: What is happening?

3.2.1 Analysis

All information in the discussion about system state passed through Admin

(see Fig. 6). For Tech to help solve the problem, he had to get Admin to

discover and report information about the state of the system. The flow of

information between the new player instance and Tech was filtered by

Admin’s (mis)understanding of the system: what Admin reported differed

from the results displayed on Admin’s screen. For example, when Tech

asked Admin to report the listening ports, Admin only reported back the

port he thought was relevant. This kind of filtering is natural as the list was

quite long and contained much irrelevant information. Yet just as Tech
started to extract critical information from Admin, Tech asked for the

manual. From Tech’s perspective, this can be seen as initiating a joint pro-

ject with Admin to discover whether the new instance ought to be set up to
listen on the same port as the old instance. From Admin’s perspective, this

appeared to be an inappropriate joint project, as he appeared to believe that

Tech should simply know the answer without needing to refer to the

documentation (especially given his dissatisfaction with prior advice from

technical support). Thus, Admin did not take up the project.

The breakdown of the joint project can be analyzed as follows. As

shown in Fig. 7, communication between Tech and Admin started over the

phone, but moved to instant messaging after about 5 minutes. With instant

messaging, messages tend to be short and lack the nuance and immediate

interactivity of real-time voice conversation. Admin’s response to Tech

about the listening ports may have been terse because of the difficulty in

copying all the information through the instant message system. When

Tech asked for the manual, his intention was likely to double-check his

knowledge. Tech already said that he did not think both instances could

use the same port. Perhaps Tech wanted to point him to specific informa-

tion in the manual regarding this. However, Admin assumed that Tech

needed the manual because of a lack of knowledge. In this case, limitations

of the communication media negatively influenced the effectiveness of the

collaboration.

14 Paul P. Maglio, Eser Kandogan, Eben Haber

Fig. 7. A closeup detailing exchange of representational state between Admin, the

computer, Archi, Tech, and Colle during the final hour of the troubleshooting ses-

sion.

Distributed Cognition and Joint Activity in Computer-System
Administration 15

3.3 Episode II: What are you talking about?

After communication with Tech broke down, a series of exchanges be-

tween Admin and Colle eventually led to the resolution of the problem.

Colle, a close colleague of Admin’s, was told by the customer relationship

manager to help Admin. As shown in Fig. 7, Colle checked with Admin in

person (walking into the office and discussing the issue with him) about

one hour into the session, and stayed in contact with Admin on and off via
instant messages. Colle worked in the next office, where he used his lap-

top computer to access the same servers. Eventually, Colle discovered that

maestro was trying to communicate with player over port 7137 [2:02:15]:

Colle: We were supposed to use 7236. Unconfigure

that instance and …
Admin: Can’t specify a return port… you only spec-

ify one port

Admin’s response indicates that he did not know how to specify the port

connecting maestro to player. Colle explained how he came to this conclu-
sion (to use 7236 rather than 7137) by pasting into instant messages the

commands he ran to test communication from internal to external server,

attempting to persuade Admin that he was correct. The exchange became
more heated [2:02:20]:

Colle: You specified the wrong port.

Admin: No, I didn’t.

Colle: You did it wrong. Yes, you did. You need to

put in 7236.
Admin: we just didn’t tell to go both ways. The

other port has nothing to do with this.
Colle: Well, all I know is what I see in the conf

file
Admin: we thought that was the return port. That

is not a return port.
Colle: there currently is no listener on <internal-

server> on 7137. So use 7236. DO IT!

Admin, obviously frustrated by the exchange, called Colle on the phone
[2:03:45]:

Admin: What are you talking about? 7236?

Colle: Yeah?

Admin: We thought that it came in on 7137 and went back on 7236,

but we were wrong, that 7236 is like an HTTPS listener port

or something?

Colle: It will still come in on 7135 to talk to maestro server appar-

ently...

Admin: right?

16 Paul P. Maglio, Eser Kandogan, Eben Haber

Colle: What's happening is it's actually trying to make a request

back, um, through the 72... well actually trying to make it

back through the 7137 to the instance...

Colle: ..and it's not happening.

Admin: I know. I know that. But I can't tell it to...

Colle: .. just create it with the 7236. Trust me.

Admin: Why? That port's not, that's going the wrong, that's only

one way too.

Colle: Trust me.

Admin: It’s only one way. Do you understand what I am saying?

Colle: Cause it's the maestro talking back to the player server in-

stance.

Admin: Yeah, but how does the player instance talk to maestro to

make some kind of request?

Colle: 7135 is the standard port it uses in all cases. So we had it

wrong. Our assumption on how it works was incorrect.

Admin: All right, all right.

Colle: If it doesn't work you can beat me up after

Admin: I want to right now. (Laughter on both sides).

3.3.1 Analysis

In this case, it was not necessary for all information in the discussion about

system state to pass through Admin (see Fig. 8). Because Colle had access

to the same systems as Admin, he could examine system state directly (as

Colle said, “all I know is what I see in the conf file”). From a

distributed cognition perspective (Hutchins 1995), the movement of repre-

sentational state among Admin, Colle, and the various computers offered

both Admin and Colle different views onto system parameters and possible
problems than those seen in the first episode with Admin and Tech. Here,

the resources (systems) Colle could access gave him an independent view

onto system configuration.

Communication centered on Colle’s instructions for solving the problem

by configuring the new player instance to use a different port. When

Admin did not immediately take up the project to fix the port settings,
Colle gave evidence supporting his solution. Colle shared the commands

that showed him which ports were listening. Again, Admin did not take up

the project proposed by Colle. When the conversation shifted from instant
messages to phone (see Fig. 7), Admin finally accepted Colle’s project to

change the port settings, but only after Colle stated that their understanding

of how the system worked had been incorrect all along. Because Admin
was upset, Colle made a special effort to appease him by jokingly agreeing

to be physically harmed if his hypothesis turned out to be wrong. In both

Distributed Cognition and Joint Activity in Computer-System
Administration 17

admitting prior misunderstanding and joking, Colle’s discourse was not

about the business at hand, the establishment of common ground about the

state of the system. Rather, Colle’s statements served a different commu-

nicative function: establishing a different joint project that would enable

Admin to follow Colle’s directions. Colle found that rather than debug-

ging Admin’s knowledge of the state of the system (repeatedly explaining

what the port settings should be), he had to debug Admin’s model of the

system itself (explicitly stating “our assumption was wrong” about the di-

rection of the ports).

In Clark’s (1996) terms, we can view discussion of system state and dis-

cussion of understanding of system state as operating at different layers in

the discourse. When using the messaging medium, Admin and Colle

worked mainly at the bottom layer, discussing system state and passing

back and forth parameters of system state. When communicating by

phone, Admin and Colle worked both at the bottom layer and above it, dis-

cussing both system state and their understanding of system operation.

Moreover, when Colle said, “If it doesn’t work, you can beat me up after,”
the discussion moved to yet another layer, this one ironic or joking, pro-

Fig. 8. In Episode II, Colle had independent access to the computer systems.

18 Paul P. Maglio, Eser Kandogan, Eben Haber

jecting a future in which Colle does not really believe Admin will physi-

cally harm him, and which served to lighten the mood. In terms of re-

sources, it seems the message medium and the phone medium afford strik-
ingly different discourse attributes. In this case, the phone enabled the

participants to move rather easily among layers of the conversation,

switching joint projects, and accomplishing their ultimate goals---whereas
instant messaging did not enable such easy shifting among layers and pro-

jects, and seemed to stifle useful discussion.

3.4 Episode III: I’ve got too many people annoying me!

Throughout, Admin maintained multiple channels of communication

(phone, email, instant messages, and face-to-face) with others. Admin’s in-

formation environment was filled with many demands for his attention.
One striking instance occurred near the end of the session. By this point,

both Colle and Archi’s developer friend had suggested the same root

cause, and Admin had agreed to the try the solution. Admin and Colle
spoke by phone [2:05:60]:

Colle: Actually, you can create a new one.

Admin: Yeah, that’s what I’m gonna do. (sighs)

Colle: I'm telling you man, this is what's happening. You can see

by the connection it's trying to make. There is no 7137 lis-

tener on maestro right now, so what is it going to try to

connect to?

Admin: Yeah, I understand what you’re saying.

Colle: You know sure, we can see this in the logs, but I think we’re

already there where we’ve found out what the issue is.

Admin: All right, all right.

Colle: It’s trying to make a return port.

Admin: All right!

Colle: I verified in the other player log that the…

Admin: Can you hang on please!

Admin put Colle on hold and spoke out loud [2:10:15]:

Admin: I can’t, I can’t think because I’ve got too many <expletive>

people annoying me… There's too many people. I hate

when there's too many people involved, and everyone's tell-

ing me to do something different and it's like you can only

do one thing at a time, you know.

After following Colle’s instructions to solve the problem, Admin at-

tempted to explain the process to Archi by phone [2:20:15]:

Distributed Cognition and Joint Activity in Computer-System
Administration 19

Admin: All right I think we got it. What we did was, uh what did we do?

The, uh, rather than specifying the 7137 port, that, cause...What hap-

pened was we had opened a port going to... We were under the impres-

sion for some reason that the port that player talks to maestro over is

7137 and then maestro returns on 7236, or 7135 and 7234, whatever.

That was the impression we were under, so we opened the firewall ports

with, um, and we opened it for 7137 to go from player to maestro and

then 7236 to go maestro to player, so we only needed to open one port

because, uh, and the port we needed to open was the one that maestro

goes back to player on, so we already had that open, but it was the 7236

port so we just, I created the new instance specifying that as the port, so

in the -m option I specified 7236 and I created all the junctions and eve-

rything looks cool at this point.

3.4.1 Analysis

Colle coached Admin through the process of fixing the port settings (see

Fig. 9). But in the end, Admin’s explanation was confused, suggesting he

actually had little understanding of the details. The movement of represen-

tational state was from Colle’s screen to Colle to Admin. Yet there may

have been too many information resources vying for Admin’s attention,

leading Admin to put Colle on hold to execute the plan undisturbed (see

the period between [2:10] and [2:20] in Fig. 7 where interaction is between

Fig. 9. In Episode III, Admin discussed configuration with both Colle and Archi.

20 Paul P. Maglio, Eser Kandogan, Eben Haber

Admin and the computer exclusively). To accomplish the job, Admin re-

lied on memory of what Colle had said, commands Colle had sent via in-

stant messages, and the manual to execute the command needed to create a
player instance with the correct port number.

4 Results and Discussion

Our administrator (Admin) spent two and a half hours coordinating infor-

mation from various sources to transform the initial configuration (Fig. 1)
into the final configuration (Fig. 4). He coordinated information from

many other people, from many configuration files and log files, from the

output of many commands typed on the command line, and from many
online documents including web pages and email (Fig. 7). We have sam-

pled only a few of these interactions. Nevertheless, the story that emerges

is one of how constraints on movement of representation and how attrib-

utes of communication media and content influence what information is at-

tended to, transmitted, and used.

Consider first the interactions with technical support (Tech). As de-

scribed, the support person was in fact on the right path to the solution

when he asked our administrator to verify the listen ports. For his part, our

administrator executed the commands to verify the ports. In examining the

propagation of representational state (Hutchins, 1995), we find that the
admin did not faithfully transmit all state information back. He focused on

7234, though he saw and mentioned 7137 as well. It appears that he fil-

tered what he transmitted according to his incorrect understanding of the
port data-flow direction.

According to the theory of language use as joint activity (Clark 1996),

we can suppose that at the highest level, the administrator and technical
support were engaged in a joint project to find and fix the problem with the

new player instance. Subordinate to this was the project to establish com-

mon understanding of which ports were listening on the maestro and
player servers. Note that only the administrator could determine which

ports were listening because only he had access to the actual systems.

Technical support attempted to draw out the relevant information by ask-
ing about the ports. However, when technical support initiated the project

to obtain information from the manual, the administrator did not take up

the project. Almost all useful communication between them ended at that

point, as it seems the administrator did not see this as worthwhile.

Distributed Cognition and Joint Activity in Computer-System
Administration 21

The administrator’s interactions with technical support and the architect

(Archi) involved joint projects to determine, understand, and fix the prob-

lem; yet the administrator performed all diagnostic and repair operations.

This contrasts with the administrator’s interaction with his colleague

(Colle), in which the colleague could access the system independently. As

shown, the colleague was confident of his understanding of the problem

and of the path to solution, but his repeated pleas for the administrator to

simply perform the operations were ineffective. In this case, it seems as if

the administrator understood the joint project with his colleague to be simi-

lar to those with technical support and the architect: the establishment of

mutual understanding so as to develop a solution together. It seems the

colleague, however, understood the joint project to be the solution of the

problem itself. Sensing this mismatch, the colleague resorted to explana-

tions in the form of commands to be run, his increasing agitation expressed

in capital letters and exclamation points in instant messages. Once the

conversation switched to the phone, further explanation attempts were

made. Here is where the colleague seems to have realized a further mis-
match: rather than a mismatch in knowledge of the various ports settings,

he realized that the administrator did not have a correct mental model of

the system with which to understand the details of the ports. To debug the

administrator’s model of how the system was put together, the colleague

merely stated that their initial understanding had been wrong. Only at this

point did the administrator begin to engage in the project the colleague had

been proposing all along, changing the port settings.

The joint project of fixing a problem was accomplished without estab-

lishing common understanding about many technical aspects of the situa-

tion, and shifted between layers, focused sometimes on the system and

sometimes on the understanding of the system. Movement of representa-

tional state about computer system parameters, whether correctly or incor-

rectly expressed, moved among participants but did not affect the actual

computer system until representations of the entire configuration itself

were conveyed. Solving the problem required participants to coordinate

activity around system model rather than around system parameters. The

telephone (as medium) enabled this change in coordination whereas text

messaging did not. Discourse by telephone had a different character than

discourse by text messaging: telephone resulted in give and take and shift-

ing of projects, whereas messaging resulted mainly in opposing positions.

That is, the rich interaction afforded by the telephone enabled participants

to coordinate information not only about the business at hand (setting the

parameters properly) but also about deciding what to do (debugging the

system model).

22 Paul P. Maglio, Eser Kandogan, Eben Haber

5 Conclusions

Support and maintenance of large-scale computer systems is rarely done

by one person working alone. Given the size and complexity of systems,

many people with different expertise and skills are required to work to-

gether to keep systems running. Yet the establishment of common ground

among participants in these tasks requires not only transmission of techni-

cal information but also establishment appropriate coordinated activity

(joint projects) and management of attention. Our analysis suggests that

information propagation is moderated by whom or what people pay atten-

tion to, which in turn is moderated by discourse attributes influencing pro-

ject initiation and uptake.

6 Acknowledgments

We thank Anna Zacchi who contributed to the field study, Christine

Halverson and Jeanette Blomberg who commented on an early draft, and

the system administrators who participated in our studies.

References

Anderson E (2002) Researching system administration. Unpublished doctoral dis-

sertation. University of California, Berkeley.

Clark HH (1996) Using language, Cambridge University Press, Cambridge, Eng-

land.

Fairburn C, Wright P, Fields R (1999) Air traffic control as distributed joint activ-

ity: Using Clark's theory of language to understand collaborative working in

ATC, In Proceedings of the European Conference on Cognitive Science.

Hutchins E (1995) Cognition in the Wild, MIT Press, Cambridge, MA.

Woods DD (1988) Coping with complexity: The psychology of human behavior

in complex systems. In Goodsten HB, Olsen SE (eds) Tasks, errors, and men-

tal models, Taylor & Francis, London.

