Value-Range Analysis of C Programs

Axel Simon

Value-Range Analysis
of C Programs

Towards Proving the Absence
of Buffer Overflow Vulnerabilities

@ Springer

Axel Simon

ISBN: 978-1-84800-016-2 e-ISBN: 978-1-84800-017-9
DOI: 10.1007/978-1-84800-017-9

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2008930099

(© Springer-Verlag London Limited 2008

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permit-
ted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored
or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in
the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright
Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer Science+Business Media
springer.com

To my parents.

Preface

A buffer overflow occurs when input is written into a memory buffer that is not
large enough to hold the input. Buffer overflows may allow a malicious person
to gain control over a computer system in that a crafted input can trick the
defective program into executing code that is encoded in the input itself. They
are recognised as one of the most widespread forms of security vulnerability,
and many workarounds, including new processor features, have been proposed
to contain the threat. This book describes a static analysis that aims to prove
the absence of buffer overflows in C programs. The analysis is conservative
in the sense that it locates every possible overflow. Furthermore, it is fully
automatic in that it requires no user annotations in the input program.

The key idea of the analysis is to infer a symbolic state for each pro-
gram point that describes the possible variable valuations that can arise at
that point. The program is correct if the inferred values for array indices
and pointer offsets lie within the bounds of the accessed buffer. The symbolic
state consists of a finite set of linear inequalities whose feasible points induce
a convex polyhedron that represents an approximation to possible variable
valuations. The book formally describes how program operations are mapped
to operations on polyhedra and details how to limit the analysis to those por-
tions of structures and arrays that are relevant for verification. With respect to
operations on string buffers, we demonstrate how to analyse C strings whose
length is determined by a NUL character within the string.

We complement the analysis with a novel sub-class of general polyhedra
that admits at most two variables in each inequality while allowing arbitrary
coefficients. By providing polynomial algorithms for all operations necessary
for program analysis, this sub-class of general polyhedra provides an efficient
basis for the proposed static analysis. The polyhedral sub-domain presented
is then refined to contain only integral states, which provides the basis for
the combination of numeric analysis and points-to analysis. We also present
a novel extrapolation technique that automatically inspects likely bounds on
variables, thereby providing a way to infer precise loop invariants.

viii Preface

Target Audience

The material in this book is based on the author’s doctoral thesis. As such it
focusses on a single topic, namely the definition of a sound value-range analy-
sis for C programs that is precise enough to verify non-trivial string buffer
operations. Furthermore, it only applies one approach to pursue this goal,
namely a fixpoint computation using convex polyhedra that approximate the
state space of the program. Hence, it does not provide an overview of various
static analysis methods but an in-depth treatment of a real-world analysis
task. It should therefore be an interesting and motivating read, augmenting,
say, a course on program analysis or formal methods.

The merit of this book lies in the formal definition of the analysis as well
as the insight gained on particular aspects of analysing a real-world program-
ming language. Most research papers that describe analyses of C programs
lack a formal definition. Most work that is formal defines an analysis for toy
languages, so it remains unclear if and how the concepts carry over to real lan-
guages. This book closes this gap by giving a formal definition of an analysis
that handles full C. However, this book is more than an exercise in formalising
a large static analysis. It addresses many facets of C that interact and that
cannot be treated separately, ranging from the endianness of the machine,
alignment of variables, overlapping accesses to memory, casts, and wrapping,
to pointer arithmetic and mixing pointers with values.

As a result, the work presented is of interest not only to researchers and
implementers of sound static analyses of C but to anyone who works in pro-
gram analysis, transformation, semantics, or even run-time verification. Thus,
even if the task at hand is not a polyhedral analysis, the first chapters, on
the semantics of C, can save the reinvention of the wheel, whereas the latter
chapters can serve in finding analogous solutions using the analysis techniques
of choice. For researchers in static analysis, the book can serve as a basis to
implement new abstraction ideas such as shape analyses that are combined
with numeric analysis. In this context, it is also worth noting that the abstrac-
tion framework in this book shows which issues are solvable and which issues
pose difficult research questions. This information is particularly valuable to
researchers who are new to the field (e.g., Ph.D. students) and who therefore
lack the intuition as to what constitutes a good research question.

Some techniques in this book are also applicable to languages that lack the
full expressiveness of C. For instance, the Java language lacks pointer arith-
metic, but the techniques to handle casting and wrapping are still applicable.
At the other extreme, the analysis presented could be adapted to analyse raw
machine code, which has many practical advantages.

The book presents a sound analysis; that is, an analysis that never misses
a mistake. Since this ambition is likely to be jeopardised by human nature, we
urge you to report any errors, omissions, and any other comments to us. To
this end, we have set up a Website at http://www.bufferoverflows.org.

Preface ix
Acknowledgments

First and foremost, I would like to thank Andy King, who has become much
more to me than a Ph.D. supervisor during these last years. He not only chose
an interesting topic but also supported me with all his expertise and encour-
agement in a way that went far beyond his duties. Furthermore, my many
friends at the Computing Laboratory at the University of Kent — who are too
numerous to list here — deserve more credit than they might realise. I wish
to thank them for their support and their ability to take my mind off work.
My special thanks go to Paula Vaisey for her undivided support during the
last months of preparing the manuscript, especially after I moved to Paris. I
would also like to thank Carrie Jadud for her diligent proofreading.

Paris, Azxel Simon
May 2008

Contents

Preface vii
Contributions. xvii
List of Figures Xix
1 Introduction 1
1.1 Technical Background 2

1.2 Value-Range Analysis 4

1.3 Analysing C o 6

1.4 Soundnessco.iii i 7
1.4.1 An Abstractionof C 7

1.4.2 Combining Value and Content Abstraction 8

1.4.3 Combining Pointer and Value-Range Analysis......... 9

1.5 Efficiency.o 11

1.6 Completenesst 15
1.6.1 Analysing String Buffers 16

1.6.2 Widening with Landmarks........... 16

1.6.3 Refining Points-to Analysis 17

1.6.4 Further Refinements 17

1.7 Related Tools e 18
1.7.1 The Astrée Analyser 18

1.72 SLAM and ESPX 19

1.7.3 CCuredo 20

1.7.4 Other Approaches 20

2 A Semanticsfor C....... 23
2.1 Core C .ot 23

2.2 Preliminaries.......... ... i 28

2.3 The Environment....... i 28

Xii Contents

2.5 Collecting Semanticsouuiinieni i 37
2.6 Related Work 42

Part I Abstracting Soundly

3 Abstract State Space 47
3.1 An Introductory Example L. 48
3.2 Points-to Analysis 51

3.2.1 The Points-to Abstract Domain 54
3.22 Related Work 55
3.3 Numeric Domains i 56
3.3.1 The Domain of Convex Polyhedra 56
3.3.2 Operations on Polyhedra 59
3.3.3 Multiplicity Domain 62
3.3.4 Combining the Polyhedral and Multiplicity Domains .. 65
3.3.5 Related Work 68

4 Taming Casting and Wrapping 71
4.1 Modelling the Wrapping of Integers 72
4.2 A Language Featuring Finite Integer Arithmetic............. 74

4.2.1 The Syntax of Sub C i 74
4.2.2 The Semanticsof Sub C......... 75
4.3 Polyhedral Analysis of Finite Integers 76
4.4 TImplicit Wrapping of Polyhedral Variables 7
4.5 Explicit Wrapping of Polyhedral Variables 78
4.5.1 Wrapping Variables with a Finite Range 78
4.5.2 Wrapping Variables with Infinite Ranges 80
4.5.3 Wrapping Several Variables 80
4.5.4 An Algorithm for Explicit Wrapping 82
4.6 An Abstract Semantics for Sub C........., 83
4.7 DISCUSSION .« . vttt 86
4.7.1 Related Work 87
5 Overlapping Memory Accesses and Pointers 89
5.1 Memory as a Set of Fields 89
5.1.1 Memory Layout for Core C 90
5.2 Access Trees . ..o oot 93
5.2.1 Related Work 99
5.3 Mixing Values and Pointers 100
5.4 Abstraction Relation....... i 106

5.4.1 On Choosing an Abstraction Framework 108

Abstract Semantics i 111
6.1 Expressions and Simple Assignments....................... 116
6.2 Assigning Structures i 118
6.3 Casting, &-Operations, and Dynamic Memory 121
6.4 Inferring Fields Automatically 123

Part IT Ensuring Efficiency

7

Planar Polyhedra 127
7.1 Operations on Inequalities 129
7.1.1 Entailment between Single Inequalities 130
7.2 Operations on Sets of Inequalities 131
7.2.1 Entailment Check 131
7.2.2 Removing Redundancies 132
723 Convex Hull i, 134
7.2.4 Linear Programming and Planar Polyhedra 144
7.2.5 Widening Planar Polyhedra...................... ... 145
The TVPI Abstract Domain 147
8.1 Principles of the TVPI Domain 148
8.1.1 Entailment Check 150
8.1.2 Convex Hull 150
8.1.3 Projection........ 151
8.2 Reduced Product between Bounds and Inequalities 152
8.2.1 Redundancy Removal in the Reduced Product 155
8.2.2 Incremental Closure, 156
8.2.3 Approximating General Inequalities.................. 160
8.2.4 Linear Programming in the TVPI Domain............ 160
8.2.5 Widening of TVPI Polyhedra 161
8.3 Related Work 163
The Integral TVPI Domain................................ 165
9.1 The Merit of Z-Polyhedra 166
9.1.1 Improving Precision 166
9.1.2 Limiting the Growth of Coefficients.................. 167
9.2 Harvey’s Integral Hull Algorithm 168
9.2.1 Calculating Cuts between Two Inequalities 169
9.2.2 Integer Hull in the Reduced Product Domain 172
9.3 Planar Z-Polyhedra and Closure........................... 177
9.3.1 Possible Implementations of a Z-TVPI Domain. 177
9.3.2 Tightening Bounds across Projections................ 179
9.3.3 Discussion and Implementation 180

9.4 Related Work 182

Xiv

10

Contents
Interfacing Analysis and Numeric Domain 185
10.1 Separating Interval from Relational Information 185
10.2 Inferring Relevant Fields and Addresses 187
10.2.1 Typed Abstract Variables 189
10.2.2 Populating the Field Map 190
10.3 Applying Widening in Fixpoint Calculations 192

Part IIT Improving Precision

11

12

13

Tracking String Lengths 197
11.1 Manipulating Implicitly Terminated Strings................. 198
11.1.1 Analysing the String Loop.......... 199
11.1.2 Calculating a Fixpoint of the Loop 203
11.1.3 Prerequisites for String Buffer Analysis 209
11.2 Incorporating String Buffer Analysis 209
11.2.1 Extending the Abstraction Relation 212
11.3 Related Worko 213
Widening with Landmarks............. 217
12.1 An Introduction to Widening/Narrowing 217
12.1.1 The Limitations of Narrowing....................... 218
12.1.2 Improving Widening and Removing Narrowing 220
12.2 Revisiting the Analysis of String Buffers.................... 220
12.2.1 Applying the Widening/Narrowing Approach 222
12.2.2 The Rationale behind Landmarks 222
12.2.3 Creating Landmarks for Widening 225
12.2.4 Using Landmarks in Widening 225
12.3 Acquiring Landmarks i 226
12.4 Using Landmarks at a Widening Point 227
12.5 Extrapolation Operator for Polyhedra...................... 229
12.6 Related Work 231
Combining Points-to and Numeric Analyses 235
13.1 Boolean Flags in the Numeric Domain 237
13.1.1 Boolean Flags and Unbounded Polyhedra 238
13.1.2 Integrality of the Solution Space..................... 239
13.1.3 Applications of Boolean Flags....................... 240
13.2 Incorporating Boolean Flags into Points-to Sets 241
13.2.1 Revising Access Trees and Access Functions 241
13.2.2 The Semantics of Expressions and Assignments 244
13.2.3 Conditionals and Points-to Flags 246

13.2.4 Incorporating Boolean Flags into the Abstraction
Relation. 249

Contents b'a’s

13.3 Practical Implementation............. 250
13.3.1 Inferring Points-to Flags on Demand 251
13.3.2 Populating the Address Map on Demand 251
13.3.3 Index-Sensitive Memory Access Functions 253
13.3.4 Related Work o i 255
14 Implementation........ 259
14.1 Technical Overview of the Analyser 260
14.2 Managing Abstract Domains 262
14.3 Calculating Fixpoints 264
14.3.1 Scheduling of Code without Loops................... 265

14.3.2 Scheduling in the Presence of Loops and
Function Calls i 267
14.3.3 Deriving an Iteration Strategy from Topology 268
14.3.4 Related Worko i 269
14.4 Limitations of the String Buffer Analysis 271
14.4.1 Weaknesses of Tracking First NUL Positions........... 271
14.4.2 Handling Symbolic NUL Positions.................... 272
14.5 Proposed Future Refinements 276
15 Conclusion and Outlook 277
A Core CExample i 281
References. 285

Contributions

This section summarises the novelties presented in this book. Some of these
contributions have already been published in refereed forums, such as our work
on the principles of tracking NUL positions by observing pointer operations
[167], the ideas behind the TVPI domain [172], a convex hull algorithm for
planar polyhedra [168], the idea of widening with landmarks [170], the idea
of an abstraction map that implicitly handles wrapping [171], and the use of
Boolean flags to refine points-to analysis [166]. Overall, this book makes the
following contributions to the field of static analysis:

1.

Chapter 2: Defining the Core C intermediate language, which is concise

yet able to express all operations of C.

Chapter 3: The observation of improved precision when implementing

congruence analysis as a reduced product with Z-polyhedra.

Chapters 4-6: A sound abstraction of C; in particular:

a) Sound treatment of the wrapping behaviour of integer variables.

b) Automatic inference of fields in structures that are relevant to the
analysis. In particular, fields on which no information can be inferred
are not tracked by the polyhedral domain and therefore incur no cost.

¢) Combining flow-sensitive points-to analysis with a polyhedral analysis
of pointer offsets.

d) Sound and precise approximation of pointer accesses when the pointer
may have a range of offsets using access trees.

e) A concise definition of an abstraction map between concrete and ab-
stract semantics.

. Chapter 7 presents a complete set of domain operations for planar poly-

hedra; in particular, a novel convex hull algorithm [168].

. Chapter 8 presents the two-variables-per-inequality (TVPI) domain [172].
. Chapter 9 describes how integral tightening techniques can be applied in

the context of the TVPI domain.

xviii ~ Contributions

7. Chapter 10 discusses techniques for adding polyhedral variables on-the-
fly. Specifically, this chapter introduces the notion of typed polyhedral
variables.

8. Chapter 11 details string buffer manipulation through pointers. The tech-
niques presented in this book are a substantial refinement of [167].

9. Chapter 12 presents widening with landmarks [170], a novel extrapolation
technique for polyhedra.

10. Chapter 13 discusses techniques for analysing a path of the program sev-
eral times using a single polyhedron [166]. It uses the techniques developed
to define a very precise points-to analysis.

The most important contribution of this book is a formal definition of
a static analysis of a real-world programming language that is reasonably
concise and — we hope — simple enough to be easily understood by other
researchers in the field. We believe that the static analysis presented in this
book will be useful as a basis for similar analyses and related projects.

List of Figures

1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3a
2.3b
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1a
4.1b
4.1c
4.2
4.3
4.4

View of the Stack 3
Counting Characters......... 5
Incompatible Points-to Information 10
Control-Flow Graphs 13
State Spaces in the for Loop 14
Syntactic Categoriest 26
Core C SYNTaK « .ottt e 26
Concrete Semantics of Core C............ 34
Concrete Semantics of Core C........ 35
Other Primitives of C 37
Echo Program 39
Points-to and Numeric Analysis 48
Flow Graph of Strings Printer.......... 49
Simple Fixpoint Calculation 50
Tracking NULL Values 52
Flow-Sensitive vs. Flow-Insensitive Analysis 53
Z-Polyhedra are not Closed Under Intersection 60
Right Shifting by 2 Bits i 61
Core C Example of Array Access ..., 62
Updating Multiplicity i i 64
Reducing Two Domains oo, 66
Topological Closuret 68
The Initial Code i 73
Removing the Compiler Warning 73
Observing that char May By Signed 73
Concrete semantics of Sub C...... 75
Signedness and Wrappingoiiiiiinann .. 76

Wrapping in Bounded State Spaces 79

XX

List of Figures

4.5
4.6
4.7
4.8

5.1
5.2
5.3
0.4
5.5
5.6

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
7.5
7.6a
7.6b
7.6¢
7.6d
7.7a
7.7b
7.8
7.9
7.10
7.11
7.12

8.1
8.2
8.3
8.4
8.5
8.6
8.7

9.1
9.2
9.3

Wrapping in Unbounded State Spaces..................... 80
Wrapping of Two Variables 81
Abstract Semantics of Sub C....... 84
Merging Wrapped Variables 86
Overlapping Write ACCeSSeS. ... oot 92
Read Operations on Access Trees......................... 95
Write Operations on Access Trees 98
Modifying 1-Values and Their Offsets...................... 102
Abstract Memory Read 103
Abstract Memory Write i 105
Abstract Semantics: Basic Blocks.......... 113
Abstract Semantics: Expressions and Assignments 117
Functions on Memory Regions 119
Abstract Semantics: Assignments of Structures 120
Abstract Semantics: Miscellaneous 122
Classic Convex Hull Calculation in 2D 127
Classic Convex Hull Calculation in 3D 128
Measuring Angles i 129
Planar Entailment Check Idea 131
Redundant Chain of Inequalities 133
Calculating a Containing Square 138
Translating Vertices i 138
Calculating the Convex Hull 139
Creating Inequalities. 139
Creating a Vertex for Lines 141
Checking Points 141
Convex Hull of One-Dimensional Output 142
Creatinga Ray....... .. o i 143
Pitfalls in Graham Scan 144
Linear Programming and Planar Polyhedra 145
Widening of Planar Polyhedra 146
Approximating General Polyhedra 148
Representation of TVPI 153
Removal of a Variable........... 154
Entailment Check for Intervals 155
Tightening Interval Bounds 156
Incremental Closure for TVPI Systems 157
Polyhedra with Several Representations 162
Cutting Plane Method 166
Precision of Z-Polyhedra 167

Calculating Cutsot e 169

9.4
9.5
9.6
9.7
9.8
9.9
9.10

10.1
10.2
10.3
10.4

11.1
11.2
11.3
11.4
11.5
11.6
11.7

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10

14.1
14.2
14.3

List of Figures xxi

Transformed Space i 170
Tightening Interval Bounds 172
Calculating Cuts for Tightening Bounds................... 174
Redundancies Due to Cuts 176
Closure for Z-Polyhedra 178
Tightening in the TVPI Domain 180
Redundant Inequality in Reduced Product................. 181
Separating Ranges and TVPI Variables 186
Allocating Memory ina Loop i 188
Populating the Fields Map 190
Closure and Widening 193
Abstract Semantics for String Buffers 199
Core C of String Copy ..« vvvvuii e 200
Control-Flow Graph of the String Loop 201
Fixpoint of the String Loop......... 205
Joins in the Fixpoint Computation 207
String-Aware Memory Accessesviiiiiiniin... 210
String-Aware Access to Memory Regions 211
Jacobi Iterations on a for-Loop 218
Unfavourable Widening Point 219
Imprecise State Space for the String Example 222
Applying Widening to the String Example................. 223
Precise State Space for the String Example 224
Fixpoint Using Landmarks 224
Landmark Strategy 227
Non-linear Growth 230
Standard vs. Revised Widening 231
Widening from Polytopes............ 232
Precision Loss for Non-trivial Points-to Sets 236
Boolean functions in the Numeric Domain 237
Control-Flow Splitting i .. 238
Distinguishing Unbounded Polyhedra 239
Modifying 1-Values i 242
Abstract Memory Accessesoiiiiiiii 243
Semantics of Expressions and Assignments................. 245
Semantics of Conditionals, 247
Accessing a Table of Constants. 253
Precision of Incorporating the Access Position.............. 255
Structure of the Analysis, 261
Adding Redundant Constraints 263

Iteration Strategy for Conditionals........................ 265

Xxii

List of Figures
14.4 Tteration Strategy Loops ..., 267
14.5 Deriving SCCs from a CFG...... 268
14.6 CFG of Example on Symbolic NUL Positions 272

14.7 Limitations of the TVPI Domain 273

