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Preface

A buffer overflow occurs when input is written into a memory buffer that is not
large enough to hold the input. Buffer overflows may allow a malicious person
to gain control over a computer system in that a crafted input can trick the
defective program into executing code that is encoded in the input itself. They
are recognised as one of the most widespread forms of security vulnerability,
and many workarounds, including new processor features, have been proposed
to contain the threat. This book describes a static analysis that aims to prove
the absence of buffer overflows in C programs. The analysis is conservative
in the sense that it locates every possible overflow. Furthermore, it is fully
automatic in that it requires no user annotations in the input program.

The key idea of the analysis is to infer a symbolic state for each pro-
gram point that describes the possible variable valuations that can arise at
that point. The program is correct if the inferred values for array indices
and pointer offsets lie within the bounds of the accessed buffer. The symbolic
state consists of a finite set of linear inequalities whose feasible points induce
a convex polyhedron that represents an approximation to possible variable
valuations. The book formally describes how program operations are mapped
to operations on polyhedra and details how to limit the analysis to those por-
tions of structures and arrays that are relevant for verification. With respect to
operations on string buffers, we demonstrate how to analyse C strings whose
length is determined by a NUL character within the string.

We complement the analysis with a novel sub-class of general polyhedra
that admits at most two variables in each inequality while allowing arbitrary
coefficients. By providing polynomial algorithms for all operations necessary
for program analysis, this sub-class of general polyhedra provides an efficient
basis for the proposed static analysis. The polyhedral sub-domain presented
is then refined to contain only integral states, which provides the basis for
the combination of numeric analysis and points-to analysis. We also present
a novel extrapolation technique that automatically inspects likely bounds on
variables, thereby providing a way to infer precise loop invariants.
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Target Audience

The material in this book is based on the author’s doctoral thesis. As such it
focusses on a single topic, namely the definition of a sound value-range analy-
sis for C programs that is precise enough to verify non-trivial string buffer
operations. Furthermore, it only applies one approach to pursue this goal,
namely a fixpoint computation using convex polyhedra that approximate the
state space of the program. Hence, it does not provide an overview of various
static analysis methods but an in-depth treatment of a real-world analysis
task. It should therefore be an interesting and motivating read, augmenting,
say, a course on program analysis or formal methods.

The merit of this book lies in the formal definition of the analysis as well
as the insight gained on particular aspects of analysing a real-world program-
ming language. Most research papers that describe analyses of C programs
lack a formal definition. Most work that is formal defines an analysis for toy
languages, so it remains unclear if and how the concepts carry over to real lan-
guages. This book closes this gap by giving a formal definition of an analysis
that handles full C. However, this book is more than an exercise in formalising
a large static analysis. It addresses many facets of C that interact and that
cannot be treated separately, ranging from the endianness of the machine,
alignment of variables, overlapping accesses to memory, casts, and wrapping,
to pointer arithmetic and mixing pointers with values.

As a result, the work presented is of interest not only to researchers and
implementers of sound static analyses of C but to anyone who works in pro-
gram analysis, transformation, semantics, or even run-time verification. Thus,
even if the task at hand is not a polyhedral analysis, the first chapters, on
the semantics of C, can save the reinvention of the wheel, whereas the latter
chapters can serve in finding analogous solutions using the analysis techniques
of choice. For researchers in static analysis, the book can serve as a basis to
implement new abstraction ideas such as shape analyses that are combined
with numeric analysis. In this context, it is also worth noting that the abstrac-
tion framework in this book shows which issues are solvable and which issues
pose difficult research questions. This information is particularly valuable to
researchers who are new to the field (e.g., Ph.D. students) and who therefore
lack the intuition as to what constitutes a good research question.

Some techniques in this book are also applicable to languages that lack the
full expressiveness of C. For instance, the Java language lacks pointer arith-
metic, but the techniques to handle casting and wrapping are still applicable.
At the other extreme, the analysis presented could be adapted to analyse raw
machine code, which has many practical advantages.

The book presents a sound analysis; that is, an analysis that never misses
a mistake. Since this ambition is likely to be jeopardised by human nature, we
urge you to report any errors, omissions, and any other comments to us. To
this end, we have set up a Website at http://www.bufferoverflows.org.
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Contributions

This section summarises the novelties presented in this book. Some of these
contributions have already been published in refereed forums, such as our work
on the principles of tracking NUL positions by observing pointer operations
[167], the ideas behind the TVPI domain [172], a convex hull algorithm for
planar polyhedra [168], the idea of widening with landmarks [170], the idea
of an abstraction map that implicitly handles wrapping [171], and the use of
Boolean flags to refine points-to analysis [166]. Overall, this book makes the
following contributions to the field of static analysis:

1.

Chapter 2: Defining the Core C intermediate language, which is concise

yet able to express all operations of C.

Chapter 3: The observation of improved precision when implementing

congruence analysis as a reduced product with Z-polyhedra.

Chapters 4-6: A sound abstraction of C; in particular:

a) Sound treatment of the wrapping behaviour of integer variables.

b) Automatic inference of fields in structures that are relevant to the
analysis. In particular, fields on which no information can be inferred
are not tracked by the polyhedral domain and therefore incur no cost.

¢) Combining flow-sensitive points-to analysis with a polyhedral analysis
of pointer offsets.

d) Sound and precise approximation of pointer accesses when the pointer
may have a range of offsets using access trees.

e) A concise definition of an abstraction map between concrete and ab-
stract semantics.

. Chapter 7 presents a complete set of domain operations for planar poly-

hedra; in particular, a novel convex hull algorithm [168].

. Chapter 8 presents the two-variables-per-inequality (TVPI) domain [172].
. Chapter 9 describes how integral tightening techniques can be applied in

the context of the TVPI domain.
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7. Chapter 10 discusses techniques for adding polyhedral variables on-the-
fly. Specifically, this chapter introduces the notion of typed polyhedral
variables.

8. Chapter 11 details string buffer manipulation through pointers. The tech-
niques presented in this book are a substantial refinement of [167].

9. Chapter 12 presents widening with landmarks [170], a novel extrapolation
technique for polyhedra.

10. Chapter 13 discusses techniques for analysing a path of the program sev-
eral times using a single polyhedron [166]. It uses the techniques developed
to define a very precise points-to analysis.

The most important contribution of this book is a formal definition of
a static analysis of a real-world programming language that is reasonably
concise and — we hope — simple enough to be easily understood by other
researchers in the field. We believe that the static analysis presented in this
book will be useful as a basis for similar analyses and related projects.
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