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Abstract 

Induction of classification rules is one of the most important 
technologies in data mining. Most of the work in this field has 
concentrated on the Top Down Induction of Decision Trees (TDIDT) 
approach. However, alternative approaches have been developed 
such as the Prism algorithm for inducing modular rules. Prism often 
produces qualitatively better rules than TDIDT but suffers from 
higher computational requirements. We investigate approaches that 
have been developed to minimize the computational requirements of 
TDIDT, in order to find analogous approaches that could reduce the 
computational requirements of Prism. 

1. Introduction 
In research areas such as bioinformatics and cosmology researchers are confronted 
with huge amounts of data to which they wish to apply data mining algorithms such 
as association rule mining or artificial intelligence techniques such as pattern 
matching. Constructing a model from a dataset in the form of classification rules is 
often the method of choice to enable the classification of previously unseen data. 
However most of these algorithms are faced with the problem of scaling up to large 
datasets. The most common method of inducing classification rules is the Top 
Down Induction of Decision Trees (TDIDT) algorithm [1], which is the basis for 
well-known classification algorithms such as C5.0.  

There have been several attempts to improve the scalability of TDIDT, notably the 
Scalable Parallelisable Induction of Decision Trees (SPRINT1) algorithm, which 
promises to scale up well without loss of any accuracy. The basic techniques used 
by SPRINT are pre-sorting of the data and parallelisation [2]. However, using the 
intermediate representation of a decision tree is not necessarily the best way to 
induce decision rules, especially if the data contains a lot of noise and clashes. The 
Prism algorithm presented by Cendrowska [3] is an alternative approach to 
developing classification rules which can often produce rules of a higher quality 
when there are clashes, noise or missing values in the dataset [4]. Unfortunately 
Prism has much higher computational requirements than TDIDT and thus in 
practice is seldom used, especially for large datasets. This work transfers the 

                                                           
1 SPRINT stands for Scalable PaRallelisable INduction of decision Trees 



approach used by SPRINT [2] in a modified form to the Prism algorithm. We will 
consider only the case where all attributes are continuous. 

2. Inducing Decision Rules: The Prism Algorithm 
Cendrowska [3] identified as a serious disadvantage of TDIDT that it generally 
constructs rules with substantial redundancies. Rulesets such as: 
 
 IF a = 1 AND b = 1 THEN CLASS = 1 
 IF c = 1 AND d = 1 THEN CLASS = 1 

which have no common variable cannot be induced directly by TDIDT. Using 
TDIDT will frequently result in unnecessarily large and confusing decision trees, 
and that in turn causes unnecessary problems, for example if the values of 
redundant attributes are not known or are expensive to find out for an unseen 
instance, resulting in the decision rules needing to be pruned to remove redundant 
rule terms. Cendrowska presents Prism as an alternative to decision tree algorithms 
with the aim of generating rules with significantly fewer redundant terms compared 
with those derived from decision trees, from the beginning.  

The basic Prism algorithm for a dataset D can be summarised as follows, assuming 
that there are n (>1) possible classes and that all attributes are continuous. 

For each class i from 1 to n inclusive: 

(a) working dataset W = D 
    delete all records that match the rules that have  
    been derived so far for class i. 
(b) For each attribute A in W 
    - sort data according to A 
    - for each possible split value v of attribute A 
      calculate the probability that the class is i 
      for both subsets A < v and A � v 
(c) Select the attribute that has the subset S with  
    the overall highest probability  
(d) build a rule term describing S 
(e) W = S 
(f) Repeat b to d until the dataset contains only  
    records of class i. The induced rule is then  
    the conjunction of all the rule terms built at  
    step d. 
(g) Repeat a to f until all records of class i have  
    been removed. 

The computational requirements of Prism are considerable. The basic algorithm 
comprises five nested loops and thus is not suitable for massive training sets. 
Nevertheless it can offer a higher quality of rules than TDIDT, for example it is 
less vulnerable to clashes. A clash occurs when a rule induction algorithm 
encounters a subset of the training set which has more than one classification but 
which cannot be processed further [4]. Prism has a bias towards leaving a test 
record unclassified rather then giving it a wrong classification. Furthermore Prism 
can produce rules with many fewer terms than the TDIDT algorithm, if there are 



missing values in the training set [4]. Loosely speaking Prism produces 
qualitatively strong rules, but suffers from its high computational complexity. 

3. Data Decoupling and Pre-Sorting to Improve 
Prism 
In the SPRINT [2] version of TDIDT the data is initially decoupled into attribute 
lists. This enables each attribute to be processed independently of the others and 
thus overcomes memory constraints. The decoupling is performed by building data 
structures of the form <record id, attribute value, class value> for each attribute. A 
detailed description of the SPRINT algorithm is given in [2], on which the figures 
given in this section are based. 

Figure 1 illustrates the creation of attribute lists from a sample data table, which is 
the part of SPRINT which we are using in an analogous way in our new version of 
Prism. Note that each list is sorted and each comprises a column with identifiers 
(ids) added so that data records split over several lists can be reconstructed. 

 

 
Figure 1 The building of sorted attribute lists 

In contrast to SPRINT, Prism removes records that are not covered by a found rule 
term. When our Prism, which works with attribute lists, finds a rule term, it 
removes all records in the corresponding attribute list that are not covered by that 
term. By using the ids of the deleted list records, Prism further deletes all records in 
its other attribute lists that match these ids.  

Figure 2 shows how data records are removed from the attribute lists. Assume we 
are generating rules for the class value G, Prism would find the highest probability 
of the class being G for the term salary � 60.4. In the salary list the records with ids 
1 and 3 are the only ones not covered by this term, thus the records with ids 1 and 3 
are removed from all the attribute lists. The shaded records in both lists are those 
that are covered by this term. 



 
Figure 2 Removing records from the attribute lists 

What is important here is that the resulting attribute lists shown on the right-hand 
side of Figure 2 are still sorted. Thus we have eliminated the multiple sorting which 
formed part of step (b) in the original algorithm description in Section 2. This 
removal of one of the five nested loops in Prism makes its runtimes considerably 
faster. A further effect of the usage of attribute lists is that memory constraints are 
removed. Our version of Prism now only needs to hold one attribute list in memory 
at any stage of the algorithm instead of the complete dataset. This allows us to 
process datasets that are too large to fit wholly into memory, which is clearly 
desirable but imposes the requirement for many I/O operations in order to buffer 
unneeded attribute lists onto the hard disc. 

4. Evaluation of Improved Prism 
We used a test dataset containing 100 attributes and 1000 records. The data 
consists of continuous double precision values with three classes. We implemented 
three algorithms: 

(1) Prism without pre-sorting. 
(2) Prism using attribute lists and pre-sorting of attributes. 
(3) Prism using attribute lists, pre-sorting of attributes and buffering of 

unneeded attribute lists to the hard disc. 

We want to show by comparing algorithms (1) and (2) that pre-sorting in Prism has 
a positive impact on efficiency and thus makes it scale better on bigger datasets. 
Although all the attribute lists were held in memory simultaneously for experiments 
(1) and (2), we conducted a further experiment (3) to investigate the overhead 
imposed by I/O operations in cases where we need to deal with memory constraints 
that make it necessary to hold only one attribute in memory at any time. We ran 
each algorithm on the training set 100 times and recorded the runtimes. We also 
checked that all the results were reproducible.  

Table 1 shows the average runtimes of each implemented algorithm on the dataset 
described above. The average runtime values are based on 100 runs. In each case 
the first run was not taken into account as it is influenced by the operating system 
which caches the algorithm. Comparing Prism with and without pre-sorting we can 
see that the pre-sorting approach speeds up Prism by about a factor of 1.8. We can 



also see the substantial overhead imposed by the buffering of unneeded attribute 
lists onto the hard disc. 

Table 1 Average runtimes of the test algorithms on the test dataset 

Algorithm Average Runtime in ms 
Prism without pre-sorting 230995 
Prism with pre-sorting 128189 
Prism with I/O and pre-sorting 1757897 

 

5. Ongoing Work 

5.1 Ongoing Work on Serial Prism 
Pre-sorting has a high potential to improve the complexity of Prism, but (as for 
SPRINT) it involves many time consuming I/O operations if the attribute lists do 
not fit into the memory. Thus one part of our present work lies in the reduction of 
the size of the attribute lists. Here we describe how we can reduce the size of 
attribute lists in the case of continuous attributes. The size of the data that needs to 
be held in memory by the conventional Prism is (8*n+1)*m bytes, where n is the 
number of attributes and m is the number of records. Eight bytes is the amount of 
storage needed for an attribute value (assuming double precision values) and one 
byte corresponds to the size of a class value assuming a character. The storage 
needed to hold all the attribute lists in memory is (8+4+1)*n*m bytes. The eight 
bytes are the size of an attribute value; the four bytes correspond to a record id and 
the one byte to a class value. However we could reduce these memory requirements 
simply by working without the attribute value in the attribute lists. We only need 
the complete attribute list structure <record id, attribute value, class value> to sort 
the attribute list according to its values. After sorting, the Prism algorithm could 
work with only the distribution of the class values in the attribute list. <record id, 
class value> for each attribute would need to be held in memory. Thus the memory 
requirement after sorting could be reduced to (4+1)*n*m bytes, which would be 
considerably less than the memory required by the conventional Prism. (The 
memory requirement of categorical attributes can be reduced in a similar way.) A 
version of Prism that works with this reduced list approach is currently in 
development.    

5.2 Ongoing Work on Parallel Prism 
We are currently focussing on data parallelisation on a shared nothing machine. In 
a shared nothing system, in contrast to a shared memory system, each processor has 
its own memory assigned to it. From the hardware point of view the shared nothing 
system could be realised by a cluster of PCs, thus it would be the cheapest and most 
flexible hardware configuration. It is especially flexible as it is easy to upgrade by 
simply adding more PCs into the cluster. Data parallelism in Prism could be 
achieved by having n processors that work on portions of the training set and 
consequently generate a global set of classification rules. The data parallelism that 
SPRINT uses is called attribute data parallelism. The basic approach is to divide 



the attribute lists equally among different processors. Thus each processor is 
responsible for 1/n attributes [5]. This approach could be used analogously by 
Prism but we expect it to cause work balancing problems after the first iteration as 
Prism removes parts of the attribute lists during its iterations. Thus it could easily 
happen that part attribute lists are completely removed on some processors and not 
on others. We are currently developing a further distributed workload balancing 
mechanism by assigning not only one but two or more chunks of each attribute list 
which are not in ascending order to a processor. Thus we would ensure that the 
records removed by Prism are less concentrated on a certain processor. 

6. Conclusions 
This paper presents ongoing work and first results in the attempt to speed up a 
classification rule induction algorithm that is an alternative to decision trees. It 
points out some weaknesses of the traditional TDIDT algorithm and the 
computational inefficiency of the alternative Prism algorithm. We propose (a) pre-
sorting of the data and (b) parallelisation as methods to improve Prism's 
computational efficiency. With regard to (a) we mapped the attribute list structure 
used in the SPRINT algorithm onto Prism. In comparison with the runtimes of the 
conventional Prism algorithm the runtimes of Prism with pre-sorting are about a 
factor of 1.8 faster. However, the data in the form of attribute lists is much bigger 
in size then the raw data and for large datasets this can result in massive I/O 
operations between the hard disc and the memory. Our ongoing work is on a new 
attribute list structure that is smaller in size and thus promises to reduce the data 
volume of the I/O operations. With regard to (b) we introduced a more advanced 
attribute list parallelisation strategy than those of SPRINT in order to overcome 
work balancing problems caused by the nature of Prism. Future work will comprise 
with regard to (a) the implementation of Prism with a smaller attribute list structure 
and with regard to (b) the implementation of data parallel Prism with a novel work 
balancing structure. 
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