Skip to main content

Integrative Structure Determination of Protein Assemblies by Satisfaction of Spatial Restraints

  • Chapter
Protein-protein Interactions and Networks

Part of the book series: Computational Biology ((COBO,volume 9))

Abstract

To understand the cell, we need to determine the structures of macromolecular assemblies, many of which consist of tens to hundreds of components. A great variety of experimental data can be used to characterize the assemblies at several levels of resolution, from atomic structures to component configurations. To maximize completeness, resolution, accuracy, precision and efficiency of the structure determination, a computational approach is needed that can use spatial information from a variety of experimental methods. We propose such an approach, defined by its three main components: a hierarchical representation of the assembly, a scoring function consisting of spatial restraints derived from experimental data, and an optimization method that generates structures consistent with the data. We illustrate the approach by determining the configuration of the 456 proteins in the nuclear pore complex from Baker’s yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, A. (2002). The society of proteins. Nature, 417(6892), 894–896.

    Article  Google Scholar 

  • Aebersold, R. and Mann, M. (2003). Mass spectrometry-based proteomics. Nature, 422(6928), 198–207.

    Article  Google Scholar 

  • Alber, F., Dokudovskaya, S., Veenhoff, L., Zhang, W., Kipper, J., Devos, D., Suprapto, A., Karni-Schmidt, O., Williams, R., Chait, B. T., Rout, M. P. and Sali, A. (2007a). Determining the architectures of macromolecular Assemblies. Nature, 450(7170), 683–694.

    Google Scholar 

  • Alber, F., Dokudovskaya, S., Veenhoff, L., Zhang, W., Kipper, J., Devos, D., Suprapto, A., Karni-Schmidt, O., Williams, R., Chait, B. T., Sali, A. and Rout, M. P. (2007b). The molecular architecture of the nuclear pore complex. Nature, 450(7170), 695–701.

    Google Scholar 

  • Alber, F., Eswar, N. and Sali, A. (2004). Structure determination of macromolecular complexes by experiment and computation. In J. M. Bujnicki (Ed.), Practical Bioinformatics (pp. 73–96). Germany: Springer-Verlag.

    Google Scholar 

  • Alber, F., Foerster, F., Korkin, D., Topf, M. and Sali, A. (2008). Integrating diverse data for structure determination of macromolecular assemblies. Ann Rev Biochem, 77, in press.

    Google Scholar 

  • Alber, F., Kim, M. F. and Sali, A. (2005). Structural characterization of assemblies from overall shape and subcomplex compositions. Structure, 13(3), 435–445.

    Article  Google Scholar 

  • Alberts, B. (1998). The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell, 92(3), 291–294.

    Article  Google Scholar 

  • Bauer, A. and Kuster, B. (2003). Affinity purification-mass spectrometry. Powerful tools for the characterization of protein complexes. Eur J Biochem, 270(4), 570–578.

    Article  Google Scholar 

  • Brunger, A. T. (1993). Assessment of phase accuracy by cross validation: the free R value. Methods and applications. Acta Crystallogr D Biol Crystallogr, 49(Pt 1), 24–36.

    Article  Google Scholar 

  • Collins, S. R., Kemmeren, P., Zhao, X. C., Greenblatt, J. F., Spencer, F., Holstege, F. C., Weissman, J. S. and Krogan, N. J. (2007). Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol Cell Proteomics, 6(3), 439–450.

    Google Scholar 

  • Davis, F. P. and Sali, A. (2005). PIBASE: a comprehensive database of structurally defined protein interfaces. Bioinformatics, 21(9), 1901–1907.

    Article  Google Scholar 

  • Devos, D., Dokudovskaya, S., Williams, R., Alber, F., Eswar, N., Chait, B. T., Rout, M. P. and Sali, A. (2006). Simple fold composition and modular architecture of the nuclear pore complex. Proc Natl Acad Sci U S A, 103(7), 2172–2177.

    Article  Google Scholar 

  • Devos, D., Dokudovskaya, S., Williams, S., Alber, F., Williams, R., Chait, B. T., Rout, M. P. Sali, A. (2004) Components of coated vesicles and nuclear pore complexes share a commmon molecular architecture. PL.S Biol,2(12), e380.

    Article  Google Scholar 

  • Devos, D. and Russell, R. B. (2007). A more complete, complexed and structured interactome. Curr Opin Struct Biol, 17(3), 370–377.

    Article  Google Scholar 

  • Fiaux, J., Bertelsen, E. B., Horwich, A. L. and Wuthrich, K. (2002). NMR analysis of a 900 K GroEL GroES complex. Nature, 418(6894), 207–211.

    Article  Google Scholar 

  • Frank, J. (2006). Three-Dimensional Electron Microscopy of Macromolecular Assemblies. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Gavin, A. C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C., Jensen, L. J., Bastuck, S., Dumpelfeld, B., Edelmann, A., Heurtier, M. A., Hoffman, V., Hoefert, C., Klein, K., Hudak, M., Michon, A. M., Schelder, M., Schirle, M., Remor, M., Rudi, T., Hooper, S., Bauer, A., Bouwmeester, T., Casari, G., Drewes, G., Neubauer, G., Rick, J. M., Kuster, B., Bork, P., Russell, R. B. and Superti-Furga, G. (2006). Proteome survey reveals modularity of the yeast cell machinery. Nature, 440(7084), 631–636.

    Article  Google Scholar 

  • Harris, M. E., Nolan, J. M., Malhotra, A., Brown, J. W., Harvey, S. C. and Pace, N. R. (1994). Use of photoaffinity crosslinking and molecular modeling to analyze the global architecture of ribonuclease P RNA. Embo J, 13(17), 3953–3963.

    Google Scholar 

  • Ito, T., Tashiro, K., Muta, S., Ozawa, R., Chiba, T., Nishizawa, M., Yamamoto, K., Kuhara, S. and Sakaki, Y. (2000). Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad Sci U S A, 97(3), 1143–1147.

    Article  Google Scholar 

  • Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Li, J., Pu, S., Datta, N., Tikuisis, A. P., Punna, T., Peregrin-Alvarez, J. M., Shales, M., Zhang, X., Davey, M., Robinson, M. D., Paccanaro, A., Bray, J. E., Sheung, A., Beattie, B., Richards, D. P., Canadien, V., Lalev, A., Mena, F., Wong, P., Starostine, A., Canete, M. M., Vlasblom, J., Wu, S., Orsi, C., Collins, S. R., Chandran, S., Haw, R., Rilstone, J. J., Gandi, K., Thompson, N. J., Musso, G., St Onge, P., Ghanny, S., Lam, M. H., Butland, G., Altaf-Ul, A. M., Kanaya, S., Shilatifard, A., O'Shea, E., Weissman, J. S., Ingles, C. J., Hughes, T. R., Parkinson, J., Gerstein, M., Wodak, S. J., Emili, A. and Greenblatt, J. F. (2006). Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 440(7084), 637–643.

    Article  Google Scholar 

  • Lakey, J. H. and Raggett, E. M. (1998). Measuring protein-protein interactions. Curr Opin Struct Biol, 8(1), 119–123.

    Article  Google Scholar 

  • Lim, R. Y. and Fahrenkrog, B. (2006). The nuclear pore complex up close. Curr Opin Cell Biol, 18(3), 342–347.

    Article  Google Scholar 

  • Malhotra, A. and Harvey, S. C. (1994). A quantitative model of the Escherichia coli 16 S RNA in the 30 S ribosomal subunit. J Mol Biol, 240(4), 308–340.

    Article  Google Scholar 

  • Mendez, R., Leplae, R., Lensink, M. F. and Wodak, S. J. (2005). Assessment of CAPRI predictions in rounds 3-5 shows progress in docking procedures. Proteins, 60(2), 150–169.

    Article  Google Scholar 

  • Phizicky, E., Bastiaens, P. I., Zhu, H., Snyder, M. and Fields, S. (2003). Protein analysis on a proteomic scale. Nature, 422(6928), 208–215.

    Article  Google Scholar 

  • Robinson, C., Sali, A. and Baumeister, W. (2007). The molecular sociology of the cell. Nature, 450(7172), 973–982.

    Article  Google Scholar 

  • Russell, R. B., Alber, F., Aloy, P., Davis, F. P., Korkin, D., Pichaud, M., Topf, M. and Sali, A. (2004). A structural perspective on protein-protein interactions. Curr Opin Struct Biol, 14(3), 313–324.

    Article  Google Scholar 

  • Sali, A. (2003). NIH workshop on structural proteomics of biological complexes. Structure, 11(9), 1043–1047.

    Article  Google Scholar 

  • Sali, A., Glaeser, R., Earnest, T. and Baumeister, W. (2003). From words to literature in structural proteomics. Nature, 422(6928), 216–225.

    Article  Google Scholar 

  • Sali, A. and Kuriyan, J. (1999). Challenges at the frontiers of structural biology. Trends Cell Biol, 9(12), M20–24.

    Article  Google Scholar 

  • Shen, M. Y. and Sali, A. (2006). Statistical potential for assessment and prediction of protein structures. Protein Sci, 15(11), 2507–2524.

    Article  Google Scholar 

  • Trester-Zedlitz, M., Kamada, K., Burley, S. K., Fenyo, D., Chait, B. T. and Muir, T. W. (2003). A modular cross-linking approach for exploring protein interactions. J Am Chem Soc, 125(9), 2416–2425.

    Article  Google Scholar 

  • Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., Knight, J. R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S. and Rothberg, J. M. (2000). A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 403(6770), 623–627.

    Article  Google Scholar 

  • Valencia, A. and Pazos, F. (2002). Computational methods for the prediction of protein interactions. Curr Opin Struct Biol, 12(3), 368–373.

    Article  Google Scholar 

  • Yang, Q., Rout, M. P. and Akey, C. W. (1998). Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications. Mol Cell, 1(2), 223–234.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Alber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Alber, F., Chait, B.T., Rout, M.P., Sali, A. (2008). Integrative Structure Determination of Protein Assemblies by Satisfaction of Spatial Restraints. In: Panchenko, A., Przytycka, T. (eds) Protein-protein Interactions and Networks. Computational Biology, vol 9. Springer, London. https://doi.org/10.1007/978-1-84800-125-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-125-1_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-124-4

  • Online ISBN: 978-1-84800-125-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics