

An Abstract Interaction Concept for Designing
Interaction Behaviour of Service Compositions*

Teduh Dirgahayu1, Dick Quartel2 and Marten van Sinderen3
1 Centre for Telematics and Information Technology (CTIT), University of Twente, P.O.

Box 217, 7500 AE Enschede, The Netherlands
{t.dirgahayu, m.j.vansinderen}@utwente.nl

2 Telematica Instituut, P.O. Box 589, 7500 AN Enschede, The Netherlands
dick.quartel@telin.nl

Abstract. In a service composition, interaction behaviour specifies an information exchange
protocol that must be complied with in order to guarantee interoperability between services.
In order to control its design complexity, interaction behaviour can be designed using a top-
down design approach utilising high abstraction levels. However, current interaction design
concepts that merely represent interaction mechanisms supported by communication
middleware force designers to design interaction behaviour close to an implementation
level. Such design concepts cannot be used for designing interaction behaviour at high
abstraction levels. Designers need an interaction design concept that is able to model
interactions in an abstract way. In this paper we present such a design concept called
abstract interaction. We show the suitability of our abstract interaction concept for
designing interaction behaviour at high abstraction levels by comparing it to BPMN
interaction concept in an example.

1 Introduction

To run its business efficiently, an enterprise makes its business processes interact
with each other and, if necessary, with the business processes of its partners.
Service-oriented computing facilitates the realisation of such interacting business
processes by means of service compositions [2][3][9]. Business processes are
exposed as services and then linked to make them interact with each other.

An interaction between services can be simple, e.g. sending a message from
one service to another, or complex, e.g. a negotiation for some procurement. A
complex interaction is composed of a number of simpler interactions performing
certain behaviour. We call this behaviour interaction behaviour. Interaction

* This work is part of the Freeband A-MUSE project (http://www.freeband.nl),

which is sponsored by the Dutch government under contract BSIK 03025.

2 T. Dirgahayu, D. Quartel, and M. van Sinderen

behaviour specifies an information exchange protocol that must be complied with
in order to guarantee interoperability between services. Choreography and
orchestration [2][14] are common ways to specifying and implementing interaction
behaviour.

Several design methods have been proposed for designing interaction behaviour
[1][4][5][6][7][8][10][19][20][21][22]. We argue that the interaction design
concepts adopted in those design methods force designers to design interaction
behaviour close to an implementation level. It is because those design concepts are
very much similar to interaction mechanisms supported by communication
middleware, e.g. message-passing and request/response interactions. Designing
close to an implementation level reveals design complexity at once.

A top-down design approach utilising high abstraction levels can be used to
give the designers some control over the complexity of an interaction behaviour
design. Using such an approach, designers transform user requirements gradually
into designs. In this way, the designers reveal the complexity in a controlled
manner. To be able to do that, designers need an interaction design concept that
can model interactions in an abstract way.

The objective of this paper is to present an interaction design concept for
designing interaction behaviour at high abstraction levels. In order to define the
design concept, we identify problems with current interaction design concepts and
define a set of requirements for the design concept. To show its suitability, we
compare the interaction design concept to BPMN interaction concept in an
example.

This paper is structured as follows. Section 2 describes problems with current
interaction design concepts. Section 3 presents an interaction design concept and
its use in the design of interaction behaviour at high abstraction levels. Section 4
compares the interaction design concept to of BPMN to show their suitability for
designing interaction behaviour at high abstraction levels. Finally, section 5
concludes this paper and identifies future work.

2 Problems with Current Interaction Design Concepts

Current methods for designing interaction behaviour adopt interaction design
concepts represented in different design languages, such as UML [1][8][10]
[19][20], BPMN [5][6][21], Petri Nets [4][7], or others, e.g. Let’s Dance [22] and
ISDL [16].

UML supports two kinds of interactions, namely sending a signal and calling
an operation [13]. They represent message-passing and request/response
interactions, respectively.

BPMN represents an interaction as a message flow showing that a business
process sends a message and another business process receives that message [12].
In Let’s Dance, an interaction is made up from two communication actions, namely
a message sending action and a message receipt action [22]. Thus, interactions in
BPMN and Let’s Dance represent message-passing interactions.

Petri Nets [15] do not have any interaction concept. To model an interaction,
the design methods in [4][7] use a pair of Petri Net transitions: one transition

 An Abstract Interaction Concept for Designing Interaction Behaviour… 3

represents an activity sending a message and another represents an activity
receiving that message. An interaction that is modelled this way represents a
message-passing interaction.

The interaction design concept in ISDL [17] can be used to model interactions
at a high abstraction level and interaction mechanisms at an implementation level.
The design method in [16], however, does not give some hints on how to use ISDL
interaction design concept for modelling interactions at high abstraction levels.

As mentioned earlier, an interaction design concept representing interaction
mechanism forces designers to design interaction behaviour close to an
implementation level. Designing close to an implementation level reveals design
complexity at once. Examples of such complexity are as follows.

A complex interaction has to appear as a composition of interaction
mechanisms. When an interaction behaviour design involves many complex
interactions, such compositions will increase design complexity. Furthermore,
when complex interactions are related with each other, presenting complex
interactions as their compositions potentially makes the relationships between them
unclear, i.e. which interaction mechanisms belong to a complex interaction. Some
structuring technique has to be applied to make those relationships clear. The
application of such a technique adds more complexity into the design.

The participants of an interaction can be primary or supporting participants. A
primary participant is a participant that concerns with the result of the interaction.
A supporting participant is a participant that facilitates the interaction between
primary participants. For example, the primary participants of a payment are a
payer and payee. This payment may include a supporting participant, e.g. a bank
that provides money-transfer service. To produce a complete interaction behaviour
design at or close to an implementation level, designers have to identify all the
participants and take into account their behaviour in the design. Considering the
behaviour of the supporting participants might add unnecessary complexity at the
early phases of a design process.

Some design methods [6][8][10] introduce multiple abstraction levels.
However, when dealing with interaction behaviour, those design methods specify
the interactions in terms of interaction mechanisms. To be able to design
interaction behaviour at high abstraction levels, designers need an interaction
design concept that can model interactions in an abstract way.

3 Interaction Design Concept for High Abstraction Levels

In this section we present an interaction design concept for designing interaction
behaviour at high abstraction levels.

3.1 Requirements

We define three requirements for the interaction design concept.

R1. The interaction design concept should be independent from any
interaction mechanisms. This requirement is to prevent the design

4 T. Dirgahayu, D. Quartel, and M. van Sinderen

concept from forcing designers to design interaction behaviour close to
an implementation level.

R2. The interaction design concept should be able to model a complex
interaction abstracting from the interaction’s behaviour. This
requirement is to allow designers to include a complex interaction into a
design without cluttering the design with the details about the
interaction’s behaviour. Such details shall be decided and included into
designs at lower abstraction levels. As a result, a design at a high
abstraction level would be less complex and easy to understand.

R3. The interaction design concept should be realisable using existing
interaction mechanisms. An interaction behaviour design produced by
designers is eventually realised by developers by mapping the design
onto existing interaction mechanisms. This requirement is to allow the
design concept to expressively model interaction mechanisms. An
expressive model avoids misinterpretation between the designers and
developers.

3.2 Abstract Interaction Concept

To fulfil requirement R1, we define an interaction as an activity which is shared by
multiple participants to establish some common results. An interaction represents a
negotiation between participants in order to establish the results. An interaction
either occurs for all participants or does not occur. If the interaction occurs, all
participants can refer to the interaction results. If the interaction does not occur,
none of the participants can refer to any (partial or temporal) result of the
interaction.

The participation of each participant is represented by an interaction
contribution, which defines the constraints it has on the interaction results. An
interaction can only occur if the constraints of all participants are satisfied. In this
case, common results are established. The results are the same for all participants;
but possibly a participant may not be interested in the complete results.

To fulfil requirement R2, we define the notion of abstract interaction by
specialising the definition of interaction. An abstract interaction is an interaction at
a higher abstraction level that represents a composition of interactions performing
certain interaction behaviour at a lower abstraction level. An abstract interaction is
concerned only with (i) the results of the interaction behaviour and (ii) the
constraints that should be satisfied by the results. An abstract interaction, hence,
may abstract from supporting participants, the results and constraints of the
composed interactions, and the relation between the composed interactions.

In a top-down design process, an abstract interaction is meant to be refined into
an interaction behaviour design. This design consists of a composition of
interactions that are more concrete than the abstract interaction they refine. The
design may also introduce supporting participants. An abstract interaction does not
impose a certain interaction behaviour design. The interaction behaviour design,
however, must conform to or be consistent with the abstract interaction it refines.
The interaction behaviour design must establish the results specified by the abstract
interaction without violating the constraints of the abstract interaction.

 An Abstract Interaction Concept for Designing Interaction Behaviour… 5

To fulfil requirement R3, we define that an abstract interaction may specify the
direction in which its information flows. In an interaction mechanism, such a
direction can be identified and gives an indication of the roles of the participants.
For example, in a message-passing interaction, the information flows from a sender
to a receiver. A participant from which the information originates plays the role of
the sender. A participant to which the information sinks plays the role of the
receiver. The ability to specify such a direction makes abstract interaction
expressive enough to model interaction mechanisms.

3.3 Modelling using Abstract Interaction Concept

To support the design of interaction behaviour using abstract interaction, we
borrow behavioural design concepts defined in ISDL [16]. We design the
interaction behaviour for the following scenario.

A buyer service interacts with a seller service in the purchase of an article. The
buyer wants to buy a notebook for a maximal price of 900 euro and wants the
notebook to be delivered to Enschede within seven days. The seller is willing to
sell any article listed in its catalogue with a minimal price that depends on the
particular article. The seller can deliver a purchased article within two and five
days if its target delivery location is in Europe. The purchase interaction consists of
three phases: selection, payment, and delivery. In the selection phase, the buyer
selects a notebook whose price is not higher than 900 euro from the seller’s
catalogue. In the payment phase, the buyer pays the seller for the selected
notebook. Finally, in the delivery phase, the seller delivers the purchased notebook
to the buyer.

At a high abstraction level, we design the purchase interaction between the
buyer and seller as a single abstract interaction (see Fig. 1). Services are
represented as rounded rectangles. An interaction is represented as segmented
ellipses linked with a line. A segmented ellipse represents the interaction
contribution of a service. Interaction results are represented as information
attributes. An information attribute has an information type and will be assigned a
value when the interaction occurs. Information attributes and constraints are
written in boxes attached to their corresponding interaction contributions. If this
interaction occurs, it results in the purchase of a notebook that is delivered to
Enschede at some price and delivery days that meet the constraints defined by the
participants. This design abstracts from how the purchase is performed.

Fig. 1. A purchase interaction as an abstract interaction

At a lower abstraction level, we refine the design to show the behaviour of the
purchase interaction (see Fig. 2). The purchase interaction is decomposed into
three interactions: selection, payment, and delivery representing the phases within

6 T. Dirgahayu, D. Quartel, and M. van Sinderen

the purchase interaction. The interaction behaviour design also defines the
relations between those interactions. The relations are represented as the arrows
between the interaction contributions.

To be realisable, the interactions in Fig. 2 have to be further refined into their
interaction behaviour because they cannot be straightforwardly mapped onto
existing interaction mechanisms. We show their refinement in section 4.2.

Fig. 2. The behaviour of the purchase interaction

3.4 Modelling Interaction Mechanisms

Abstract interactions at an implementation level should be realisable. At this level,
an abstract interaction should expressively model its target interaction mechanism.
We illustrate how to represent a message-passing interaction as an abstract
interaction.

Fig. 3 models the behaviour of a message-passing interaction between a sender
and receiver. The sender gives a message “Hello” to communication middleware
through a send interaction. The middleware then passes the message to the receiver
through a receive interaction.

Fig. 3. The behaviour of a message-passing interaction

The middleware plays the role of a supporting participant. An abstract
interaction should be able to abstract the interaction behaviour from the
middleware participation while maintaining the model expressiveness. For
indicating the direction in which the message flows, we use an arrow to link the
interaction contributions (see Fig. 4).

Fig. 4. Message-passing interaction abstracting from the middleware

 An Abstract Interaction Concept for Designing Interaction Behaviour… 7

4 Comparison with BPMN

In this section, we show the suitability of our abstract interaction concept by
comparing it to BPMN interaction concept. We choose BPMN because of two
reasons. First, BPMN interaction design concept represents a message-passing
interaction. Hence BPMN can be considered as a representative of other design
languages whose interaction design concepts also represent message-passing
interaction. Second, BPMN supports abstraction levels by providing the notation of
abstract processes and (collapsed) sub-processes. Therefore, we can compare the
use of the concepts at multiple abstraction levels.

We use the purchase scenario as described in Section 3.3. We add the following
user requirements. To facilitate payment, the buyer and seller agree to use a
money-transfer service provided by a bank. To facilitate delivery, the seller makes
use of a delivery service provided by a courier.

4.1 Designs in BPMN

At a high abstraction level, we model the purchase scenario as interacting abstract
processes (see Fig. 5). The model shows the message exchange between
participants. All participants, i.e. the primary and supporting participants, and all
message flows have to appear in the design.

We cannot abstract closely-related message flows into a single message flow
because such an abstraction is not supported by the semantics of message flow.
Abstracting the design from the supporting participants, i.e. the bank and the
courier, will remove the message flows numbered with 5, 6, 8, 9, 11, 12, and 14.
This would leave the design incomplete and unclear. Questions may arise, e.g. after
receiving an invoice (no. 4), should the buyer pay the invoice before notifying the
seller about the payment (no. 7)?

���������	
����������

��������������������

�����	�������

�����������	�����	����

�������
� ����	�

����������!���"��

#��$�����%�&�	�

'����	�����������

(����	��)	"����

*����	���&���	�����	����

+�����,�����	���-����	���&�%�&�	�

�'����	���&����������$�����!���"��

�(��!���"���.������

Fig. 5. The purchase scenario as interacting abstract processes

To model the phases in the purchase scenario, we refine the design by adding
the phases as collapsed sub-processes within the participants’ processes. The
collapsed sub-processes are selection, payment and delivery (see Fig. 6). Since the
interactions are already at implementation level, we do not refine them.

8 T. Dirgahayu, D. Quartel, and M. van Sinderen

Fig. 6. Phases are represented as collapsed sub-processes

To model the complete private business processes of the participants, we
further refine the design by expanding the sub-processes with activities (see Fig.
7). We do not refine the interaction.

4.2 Designs using Abstract Interaction Concept

At a high abstraction level, we represent the purchase scenario as a single
purchase interaction between the primary participants, i.e. the buyer and the seller
(see Fig. 1). The interaction models the results intended from the scenario. The
design abstracts from the supporting participants, i.e. the bank and courier.

To model the phases, we refine the purchase interaction into three interactions:
selection, payment, and delivery (see Fig. 2). Information attributes and constraints
are refined and distributed over the interactions.

To include the participation of the bank and the courier, we further refine the
design by introducing the bank in the payment interaction and the courier in the
delivery interaction (see Fig. 8). For brevity, we omit the information attributes and
constraints.

We further refine the design to model the behaviour of each interaction (see
Fig. 9). The refinement results in the choreography between the participants. We
structure the behaviour of the buyer and the seller to indicate the phases.
Refinement should be further done until all the interactions become realisable.

 An Abstract Interaction Concept for Designing Interaction Behaviour… 9

Fig. 7. The purchase scenario in BPMN

Fig. 8. The participation of the bank and the courier

10 T. Dirgahayu, D. Quartel, and M. van Sinderen

����������

������������

.�&�	� .�&�	�

����"�� ����"��

��	���& ��	���&

	���� 	����

����"�� �����

�������

����"�� �����

��	

���	���� ����
 ����
���	����

�	"���� �	"����

	���� 	����

����� �����

��������������

Fig. 9. The behaviour of the purchase interaction

4.3 Discussion

Ultimately an interaction is performed to establish some results. The results are
more essential than the way they are established. Therefore, we define that an
interaction design concept is suitable for designs at high abstraction levels if it can
represent an interaction and its results abstracting from the way the results are
established.

Abstraction levels in BPMN can only be applied within the behaviour of
individual business processes participating in interaction behaviour. BPMN cannot
raise the interaction behaviour to a higher abstraction level. BPMN cannot model
interactions and its results without specifying how the results should be
established. We conclude that BPMN interaction design concept is not suitable for
designing interaction behaviour at high abstraction levels.

Our abstract interaction concept is defined with an intention to model
interaction behaviour designs at high abstraction levels. As evidence, we have
shown its suitability in the design of the example. We start the design by modelling
the results that are expected from the scenario. Identification and inclusion of the
supporting participants and detailed interactions are deferred until they matter to
the design. For instance, at a lower abstraction level, we want to show the phases in
the scenario. We model the phases as interactions (see Fig. 2) without defining yet
the interaction behaviour of the phases. We claim that the abstract interaction
concept is suitable for designing interaction behaviour at high abstraction levels.

5 Conclusions

We have presented an interaction design concept called abstract interaction for
designing interaction behaviour of service compositions at high abstraction levels.
An abstract interaction is able to represent interaction behaviour as a single
interaction at a high abstraction level. An abstract interaction is concerned with the

 An Abstract Interaction Concept for Designing Interaction Behaviour… 11

results of the interaction behaviour and the constraints which should be satisfied by
the results, abstracting from the behaviour itself. We have shown the suitability of
the abstract interaction concept in the design of interaction behaviour at high
abstraction levels.

An abstract interaction may have several possible refinements at a lower
abstraction level and, hence, multiple realisations. Thus, the abstract interaction
concept can be used to extend the approach defined in the Model-Driven
Architecture (MDA) [11]. An abstract interaction may have not only multiple
realisations at different technology platforms, but also multiple realisations with
different interaction behaviour. For example, the design in Fig. 2 can be refined
into different interaction behaviour in which the payment interaction is done using
credit card.

The abstract interaction concept supports as many abstraction levels as needed
by designers. In some cases, designers prefer to have a limited set of abstraction
levels; each of which has a pre-defined purpose. Design methods defining such a
limited set of abstraction levels can be developed as guidelines in designing
interaction behaviour using the interaction concept. For example, a framework in
[18] defines three generic abstraction levels. At a high abstraction level, a service
is modelled as a single interaction between a service user and provider. At a lower
abstraction level, this interaction is refined into choreography of multiple
interactions. At another lower abstraction level, the service provider may be
refined into an orchestration of other service compositions. The abstract interaction
concept fits within this limited set of abstraction levels.

The abstract interaction concept is applicable at different abstraction levels.
This capability allows designers to apply the same refinement patterns and
conformance assessment method consistently. The interaction concept does not
require designers to master different design concepts and tools for different
abstraction levels.

In future work, we will identify patterns of interaction refinement. Such
patterns may serve as guidelines for designers in refining an abstract interaction
into an interaction behaviour design. We will also develop rules to support
conformance assessment for those patterns. The patterns and rules should include
time attributes of an interaction. Time attributes are useful for specifying the time
moment and the duration an interaction may occur.

6 References

[1] Baresi L, Heckel R, Thöne S, Varró D, (2003) Modeling and validation of service-
oriented architectures: application vs. style. Proc. 9th European Software Engineering
Conf.: 68-77

[2] Benatallah B, Dijkman RM., Dumas M, Maamar Z, (2005) Service Composition:
Concepts, Techniques, Tools and Trends. Service-Oriented Software Engineering:
Challenges and Practices. Idea Group, Inc.: 48-66

[3] Curbera F, Khalaf R, Mukhi N, Tai S, Weerawarana S, (2003) The Next Step in Web
Services. Communications of the ACM 46(10): 24-28

[4] Dijkman R, Dumas M, (2004) Service-Oriented Design: A Multi-Viewpoint
Approach. International Journal of Cooperative Information Systems 13(4): 337-368

12 T. Dirgahayu, D. Quartel, and M. van Sinderen

[5] Dijkman RM, (2006) Choreography-Based Design of Business Collaborations. BETA
Working Paper WP-188, Eindhoven University of Technology

[6] Emig C, Weisser J, Abeck S, (2006) Development of SOA-Based Software Systems -
an Evolutionary Programming Approach. Proc. Advanced Intl. Conf. on
Telecommunications and Intl. Conf. on Internet and Web Applications and Services:
182-187

[7] Hamadi R, Benatallah B, (2003) A Petri Net-Based Model for Web Service
Composition. Proc. 14th Australasian Database Conf.: 191-200

[8] Kramler G, Kapsammer E, Retschitzegger W, Kappel G, (2006) Towards Using UML
2 for Modelling Web Service Collaboration Protocols. Interoperability of Enterprise
Software and Applications, Springer: 227-238

[9] Leymann F, Roller D, Schmidt M-T, (2002) Web Services and Business Process
Management. IBM Systems Journal 41(2): 198-211

[10] Millard DE, Howard Y, Jam E-R, Chennupati S, Davis HC, Gilbert L, Wills GB,
(2006) FREMA Method for describing Web Services in a Service-Oriented
Architecture. Technical Report ECSTR-IAM06-002, University of Southampton

[11] OMG, (2001) Model Driven Architecture (MDA). ormsoc/2001-07-01
[12] OMG, (2006) Business Process Modeling Notation (BPMN) Specification. dtc/06-02-

01
[13] OMG, (2007) Unified Modeling Language: Superstructure version 2.1.1. formal/

2007-02-03
[14] Peltz C, (2003) Web Services Orchestration and Choreography. IEEE Computer

36(8): 46-52
[15] Peterson JL, (1981) Petri Net Theory and the Modeling of Systems. Prentice-Hall
[16] Quartel D, Dijkman R, van Sinderen M, (2004) Methodological support for service-

oriented design with ISDL. Proc. 2nd Intl. Conf. on Service Oriented Computing: 1-10
[17] Quartel D, Ferreira Pires L, van Sinderen M, (2002) On Architectural Support for

Behaviour Refinement in Distributed Systems Design. Journal of Integrated Design
and Process Science 6(1): 1-30

[18] Quartel DAC, Steen MWA, Pokraev S, van Sinderen MJ, (2007) COSMO: A
Conceptual Framework for Service Modelling and Refinement. Information Systems
Frontiers 9: 225-244

[19] Skogan D, Grønmo R, Solheim I, (2004) Web service composition in UML. Proc. 8th
IEEE Intl. Enterprise Distributed Object Computing Conf.: 47-57

[20] Thöne S, Depke R, Engels G, (2003) Process-Oriented, Flexible Composition of Web
Services with UML. LNCS 2784: 390-401

[21] White SA, (2005) Using BPMN to Model a BPEL Process. BPTrends 3(3): 1-18
[22] Zaha JM, Dumas M, ter Hofstede A, Barros A, Decker G, (2006) Service Interaction

Modeling: Bridging Global and Local View. Proc. 10th IEEE Intl. EDOC Conf.: 45-55

