An Abstract Interaction Concept for Designing
I nteraction Behaviour of Service Compositions

Teduh Dirgahayt) Dick Quartel and Marten van Sinderén
Centre for Telematics and Information Technolog¥I{Q, University of Twente, P.O.
Box 217, 7500 AE Enschede, The Netherlands
{t.dirgahayu, mj.vansi nderen}@utwente. nl
2 Telematica Instituut, P.O. Box 589, 7500 AN Enstehélhe Netherlands
di ck. quartel @elin.nl

Abstract. In a service composition, interaction behaviowcifies an information exchange
protocol that must be complied with in order to igudee interoperability between services.
In order to control its design complexity, intefantbehaviour can be designed using a top-
down design approach utilising high abstractiorelevHowever, current interaction design
concepts that merely represent interaction mechenisupported by communication
middleware force designers to design interactiohak®ur close to an implementation
level. Such design concepts cannot be used fogmuieg interaction behaviour at high
abstraction levels. Designers need an interactiesigd concept that is able to model
interactions in an abstract way. In this paper wesgnt such a design concept called
abstract interaction We show the suitability of our abstract interasticoncept for
designing interaction behaviour at high abstractievels by comparing it to BPMN
interaction concept in an example.

1 Introduction

To run its business efficiently, an enterprise nsake business processes interact
with each other and, if necessary, with the busine®cesses of its partners.

Service-oriented computing facilitates the reaisanf such interacting business

processes by means of service compositions [2][3Jfisiness processes are
exposed as services and then linked to make thiemaat with each other.

An interaction between services can be simple, egding a message from
one service to another, or complex, e.g. a negmtifor some procurement. A
complex interaction is composed of a number of @mmteractions performing
certain behaviour. We call this behavioimteraction behaviour Interaction

" This work is part of the Freeband A-MUSE projdutty{://www.freeband.nl),
which is sponsored by the Dutch government undetract BSIK 03025.

2 T. Dirgahayu, D. Quartel, and M. van Sinderen

behaviour specifies an information exchange prdttwat must be complied with
in order to guarantee interoperability between ises: Choreography and
orchestration [2][14] are common ways to specifyamgl implementing interaction
behaviour.

Several design methods have been proposed fomilggiopteraction behaviour
[11[4105116]1[718][10][19][20][21][22]. We argue ttlat the interaction design
concepts adopted in those design methods forcegraisi to design interaction
behaviour close to an implementation level. Itésduse those design concepts are
very much similar to interaction mechanisms sumgbrby communication
middleware, e.g. message-passing and request/mspateractions. Designing
close to an implementation level reveals designaerity at once.

A top-down design approach utilising high abstattievels can be used to
give the designers some control over the complexdtgan interaction behaviour
design. Using such an approach, designers transfiean requirements gradually
into designs. In this way, the designers reveal dbhmplexity in a controlled
manner. To be able to do that, designers needtaraation design concept that
can model interactions in an abstract way.

The objective of this paper is to present an imtiza design concept for
designing interaction behaviour at high abstracterels. In order to define the
design concept, we identify problems with curreniéiaction design concepts and
define a set of requirements for the design conceptshow its suitability, we
compare the interaction design concept to BPMNraat#on concept in an
example.

This paper is structured as follows. Section 2 diess problems with current
interaction design concepts. Section 3 presentstaraction design concept and
its use in the design of interaction behaviourightabstraction levels. Section 4
compares the interaction design concept to of BRbINhow their suitability for
designing interaction behaviour at high abstractiewels. Finally, section 5
concludes this paper and identifies future work.

2 Problemswith Current I nteraction Design Concepts

Current methods for designing interaction behaviadopt interaction design
concepts represented in different design languagesh as UML [1][8][10]
[19][20], BPMN [5][6][21], Petri Nets [4][7], or dters, e.g. Let's Dance [22] and
ISDL [16].

UML supports two kinds of interactions, namekgnding a signahandcalling
an operation [13]. They represent message-passing and recpssimse
interactions, respectively.

BPMN represents an interaction asnassage flowshowing that a business
process sends a message and another businessspexgises that message [12].
In Let’'s Dance, an interaction is made up from t@mmunication actions, namely
amessage sending actiamd amessage receipt actid@2]. Thus, interactions in
BPMN and Let's Dance represent message-passingatiens.

Petri Nets [15] do not have any interaction concé&jpt model an interaction,
the design methods in [4][7] use a pair of Petrt lansitions: one transition

An Abstract Interaction Concept for Designing hatgion Behaviour... 3

represents an activity sending a message and anotpeesents an activity
receiving that message. An interaction that is redethis way represents a
message-passing interaction.

The interaction design concept in ISDL [17] canused to model interactions
at a high abstraction level and interaction medrasiat an implementation level.
The design method in [16], however, does not govaes hints on how to use ISDL
interaction design concept for modelling interagti@t high abstraction levels.

As mentioned earlier, an interaction design concgeptresenting interaction
mechanism forces designers to design interactiohaweur close to an
implementation level. Designing close to an implatagon level reveals design
complexity at once. Examples of such complexityaséollows.

A complex interaction has to appear as a compositid interaction
mechanisms. When an interaction behaviour desigiohies many complex
interactions, such compositions will increase destgmplexity. Furthermore,
when complex interactions are related with eachemtlpresenting complex
interactions as their compositions potentially nsatte relationships between them
unclear, i.e. which interaction mechanisms belang tomplex interaction. Some
structuring technique has to be applied to makesehelationships clear. The
application of such a technique adds more compléxib the design.

The participants of an interaction can be primargupporting participants. A
primary participant is a participant that concewith the result of the interaction.
A supporting participant is a participant that féaies the interaction between
primary participants. For example, the primary iggzants of a payment are a
payer and payee. This payment may include a supgagparticipant, e.g. a bank
that provides money-transfer service. To produceraplete interaction behaviour
design at or close to an implementation level, gtemis have to identify all the
participants and take into account their behaviauthe design. Considering the
behaviour of the supporting participants might addecessary complexity at the
early phases of a design process.

Some design methods [6][8][10] introduce multipldstaaction levels.
However, when dealing with interaction behaviotgse design methods specify
the interactions in terms of interaction mechanismi® be able to design
interaction behaviour at high abstraction levelsesighers need an interaction
design concept that can model interactions in atradt way.

3 Interaction Design Concept for High Abstraction Levels

In this section we present an interaction desigmcept for designing interaction
behaviour at high abstraction levels.

3.1 Requirements
We define three requirements for the interactiosigfeconcept.

R1. The interaction design concept should be independem any
interaction mechanismsThis requirement is to prevent the design

4 T. Dirgahayu, D. Quartel, and M. van Sinderen

concept from forcing designers to design interacbehaviour close to
an implementation level.

R2. The interaction design concept should be able taleh@ complex
interaction abstracting from the interaction’s bef@ur. This
requirement is to allow designers to include a dempteraction into a
design without cluttering the design with the dstaabout the
interaction’s behaviour. Such details shall be degiand included into
designs at lower abstraction levels. As a resultleaign at a high
abstraction level would be less complex and easytterstand.

R3. The interaction design concept should be realisalding existing
interaction mechanism#n interaction behaviour design produced by
designers is eventually realised by developers appimg the design
onto existing interaction mechanisms. This requéetrs to allow the
design concept to expressively model interactionchmaisms. An
expressive model avoids misinterpretation betwédendesigners and
developers.

3.2 Abstract Interaction Concept

To fulfil requirement R1, we define amteractionas an activity which is shared by
multiple participants to establish some commonltesAn interaction represents a
negotiation between participants in order to eghbihe results. An interaction
either occurs for all participants or does not ocdlithe interaction occurs, all
participants can refer to the interaction resuft¢he interaction does not occur,
none of the participants can refer to any (partialtemporal) result of the
interaction.

The participation of each participant is represgntey an interaction
contribution which defines the constraints it has on the adgon results. An
interaction can only occur if the constraints dfpalrticipants are satisfied. In this
case, common results are established. The reseliha same for all participants;
but possibly a participant may not be interestetthincomplete results.

To fulfil requirement R2, we define the notion abstract interactionby
specialising the definition of interaction. An alast interaction is an interaction at
a higher abstraction level that represents a coitipof interactions performing
certain interaction behaviour at a lower abstractevel. An abstract interaction is
concerned only with (i) the results of the inteiattbehaviour and (ii) the
constraints that should be satisfied by the resilts abstract interaction, hence,
may abstract from supporting participants, the Itesand constraints of the
composed interactions, and the relation betweendh®gosed interactions.

In a top-down design process, an abstract interadsi meant to be refined into
an interaction behaviour design. This design co:siE¥ a composition of
interactions that are more concrete than the asingeraction they refine. The
design may also introduce supporting participafitsabstract interaction does not
impose a certain interaction behaviour design. ifiteraction behaviour design,
however, must conform to or be consistent withabstract interaction it refines.
The interaction behaviour design must establishrébalts specified by the abstract
interaction without violating the constraints oétabstract interaction.

An Abstract Interaction Concept for Designing hatgion Behaviour... 5

To fulfil requirement R3, we define that an abstiateraction may specify the
direction in which its information flows. In an @raction mechanism, such a
direction can be identified and gives an indicatidrithe roles of the participants.
For example, in a message-passing interactiorinfbemation flows from a sender
to a receiver. A participant from which the infottioa originates plays the role of
the sender. A participant to which the informatisinks plays the role of the
receiver. The ability to specify such a directiorak®s abstract interaction
expressive enough to model interaction mechanisms.

3.3 Modelling using Abstract I nteraction Concept

To support the design of interaction behaviour gisabstract interaction, we
borrow behavioural design concepts defined in IS[6]. We design the
interaction behaviour for the following scenario.

A buyer service interacts with a seller servic¢h@ purchase of an article. The
buyer wants to buy a notebook for a maximal pri€®@0 euro and wants the
notebook to be delivered to Enschede within seways.dThe seller is willing to
sell any article listed in its catalogue with a mial price that depends on the
particular article. The seller can deliver a pusdtharticle within two and five
days if its target delivery location is in Eurofiéne purchase interaction consists of
three phases: selection, payment, and deliveryhénselection phase, the buyer
selects a notebook whose price is not higher tha® &uro from the seller’s
catalogue. In the payment phase, the buyer paysséfier for the selected
notebook. Finally, in the delivery phase, the salielivers the purchased notebook
to the buyer.

At a high abstraction level, we design the purchaseraction between the
buyer and seller as a single abstract interactieee Fig. 1). Services are
represented as rounded rectangles. An interaciorepresented as segmented
ellipses linked with a line. A segmented ellipsepresents the interaction
contribution of a service. Interaction results aepresented asnformation
attributes An information attribute has an information tygeed will be assigned a
value when the interaction occurs. Information ilatites and constraints are
written in boxes attached to their correspondingrarction contributions. If this
interaction occurs, it results in the purchase aioctebook that is delivered to
Enschede at some price and delivery days that theetonstraints defined by the
participants. This design abstracts from how thelpase is performed.

Article a, Price p, Day d, Article a, Price p, Day d,
Location | Location |
isNotebook(a) & inCatalog(a) &
p<900&d=s78& p 2 minPrice(a) & 2=d=<58&
| = “Enschede” inRegion(l, “Europe”)

/

Fig. 1. A purchaseinteraction as an abstract interaction

At a lower abstraction level, we refine the dedigrshow the behaviour of the
purchaseinteraction (sed~ig. 2). The purchase interaction is decomposed into
three interactionsselection payment anddelivery representing the phases within

6 T. Dirgahayu, D. Quartel, and M. van Sinderen

the purchase interaction. The interaction behaviour design atsfines the
relations between those interactions. The relatemesrepresented as the arrows
between the interaction contributions.

To be realisable, the interactionshig. 2 have to be further refined into their
interaction behaviour because they cannot be stfaigvardly mapped onto
existing interaction mechanisms. We show theinesfient in section 4.2.

[Article a, Price p | [Article a, Price p |
| isNotebook(a) & p < 900 | |inCatalog(a) & p = minPrice(a) |
T 1

Seller

Amount a

Article a, Day d, Article a, Day d,
Location | | Location |
a=selecta&ds7& a=selecta&2sds5
| =“Enschede” & inRegion(l, “Europe”)

Fig. 2. The behaviour of thpurchasenteraction

3.4 Modelling Interaction Mechanisms

Abstract interactions at an implementation leveludtl be realisable. At this level,
an abstract interaction should expressively madetirget interaction mechanism.
We llustrate how to represent a message-passitgrattion as an abstract
interaction.

Fig. 3 models the behaviour of a message-passing inienaottween a sender
and receiver. The sender gives a message “Hell@btomunication middleware
through asendinteraction. The middleware then passes the meds«ifpe receiver
through areceiveinteraction.

‘ Message m ‘ ‘ m =send.m ‘ ‘ Message m ‘

Middleware Receiver

Fig. 3. The behaviour of a message-passing interaction

The middleware plays the role of a supporting pgréint. An abstract
interaction should be able to abstract the int@actbehaviour from the
middleware participation while maintaining the mbdexpressiveness. For
indicating the direction in which the message flows use an arrow to link the
interaction contributions (sd€g. 4).

Message m

‘ m = “Hello” ‘ ‘ Message m ‘

/ \

/ \

Fig. 4. Message-passing interaction abstracting fronmtiugleware

An Abstract Interaction Concept for Designing hation Behaviour... 7

4 Comparison with BPMN

In this section, we show the suitability of our @hst interaction concept by
comparing it to BPMN interaction concept. We cho®®@MN because of two
reasons. First, BPMN interaction design conceprasmts a message-passing
interaction. Hence BPMN can be considered as aeseptative of other design
languages whose interaction design concepts alpeesent message-passing
interaction. Second, BPMN supports abstractionl¢elbg providing the notation of
abstract processeand (collapsed) sub-processeEherefore, we can compare the
use of the concepts at multiple abstraction levels.

We use the purchase scenario as described in 8&80We add the following
user requirements. To facilitate payment, the bused seller agree to use a
money-transfer service provided by a bank. To itatd delivery, the seller makes
use of a delivery service provided by a courier.

4.1 Designsin BPMN

At a high abstraction level, we model the purchesenario as interacting abstract
processes (sed-ig. 5. The model shows the message exchange between
participants. All participants, i.e. the primarydasupporting participants, and all
message flows have to appear in the design.

We cannot abstract closely-related message flowsansingle message flow
because such an abstraction is not supported bgeimantics of message flow.
Abstracting the design from the supporting particifs, i.e. the bank and the
courier, will remove the message flows numbered it 6, 8, 9, 11, 12, and 14.
This would leave the design incomplete and uncl@aestions may arise, e.g. after
receiving an invoice (no. 4), should the buyer fiayinvoice before notifying the
seller about the payment (no. 7)?

Buyer Seller Bank Courier

--1) Request Catalogue-{>
---2) Send Catalogue----

—————— ---5) Order Money Transfer----

6) Confirm Money Transfer----------------------

----7) Notify Payment---{> --8) Check Account:-|
-10) Confirm Payment--- -9) Show Balance----
——————————————— 11) Order Delivery------------1
—13) Notify Delivery—— ~ Kh—er 12) Confirm Ord

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 14) Deliver product: ‘

Fig. 5. The purchase scenario as interacting abstracepses

To model the phases in the purchase scenario, fime rthe design by adding
the phases as collapsed sub-processes within theigents’ processes. The
collapsed sub-processes asdection paymentanddelivery (seeFig. 6). Since the
interactions are already at implementation level,d@ not refine them.

8 T. Dirgahayu, D. Quartel, and M. van Sinderen

Buyer

Seller

Bank

Courier

Y

¥

Selection 4 Selection
121
3
[+] [+]
Payment 4l Payment
m Payment
6
7 8
104- 9
[+] [+]
Delivery Delivery 1l Delivery
13- 12
S K

566

Fig. 6. Phases are represented as collapsed sub-processes

To model the complete private business processetheofparticipants, we
further refine the design by expanding the sub-gsees with activities (sddg.
7). We do not refine the interaction.

4.2 Designsusing Abstract I nteraction Concept

At a high abstraction level, we represent the pasehscenario as a single
purchaseinteraction between the primary participants, the. buyer and the seller
(seeFig. 1). The interaction models the results intended ftbm scenario. The
design abstracts from the supporting participargsthe bank and courier.

To model the phases, we refine th@chaseinteraction into three interactions:
selection paymentanddelivery (seeFig. 2). Information attributes and constraints
are refined and distributed over the interactions.

To include the participation of the bank and thera, we further refine the
design by introducing the bank in thaymentinteraction and the courier in the
deliveryinteraction (se€ig. 8). For brevity, we omit the information attributasd
constraints.

We further refine the design to model the behaviolueach interaction (see
Fig. 9). The refinement results in the choreography betwide participants. We
structure the behaviour of the buyer and the seiterindicate the phases.
Refinement should be further done until all theiattions become realisable.

An Abstract Interaction Concept for Designing hatgion Behaviour...

Buyer Seller Bank Courier
Selection Selection
Request Gt
Send Catals
Catalog Stlo end Catalog
Send N Receive
Purchase Order Purchase Order
Payment Payment
Receive Ladd Send
Invoice Invoice
‘ Payment
5
Order Transfer L Transfer Money
|
" Receive
Notify Transfer =T Nofification
Y
8
Check Account o Check Account
A
Receive
Confirmation ~-r--10--+-—-0 Confirm Payment
Delivery Delivery
i .
" Receive
Order Delivery 12 Delivery Order
Delivery
Receive Delivery 131

Notification

—--0 Notify Delivery

Send

Receive Delivery

O

Delivery Order

Fig. 7. The purchase scenario in BPMN

" deliver .'

Fig. 8. The participation of theankand thecourier

10 T. Dirgahayu, D. Quartel, and M. van Sinderen

Buyer Seller

Courier

Fig. 9. The behaviour of thpurchasenteraction

4.3 Discussion

Ultimately an interaction is performed to establ®me results. The results are
more essential than the way they are establishbdrefore, we define that an
interaction design concept is suitable for desiisigh abstraction levels if it can
represent an interaction and its results abstgdiiom the way the results are
established.

Abstraction levels in BPMN can only be applied witithe behaviour of
individual business processes participating inratgon behaviour. BPMN cannot
raise the interaction behaviour to a higher abstadevel. BPMN cannot model
interactions and its results without specifying hdie results should be
established. We conclude that BPMN interactionglesioncept is not suitable for
designing interaction behaviour at high abstrackewels.

Our abstract interaction concept is defined with iatention to model
interaction behaviour designs at high abstractiewvels. As evidence, we have
shown its suitability in the design of the exammée start the design by modelling
the results that are expected from the scenaramtification and inclusion of the
supporting participants and detailed interactiores geferred until they matter to
the design. For instance, at a lower abstractieel Jeve want to show the phases in
the scenario. We model the phases as interactieesig. 2) without defining yet
the interaction behaviour of the phases. We cldiat the abstract interaction
concept is suitable for designing interaction bétavat high abstraction levels.

5 Conclusions

We have presented an interaction design concefgdcabstract interactionfor

designing interaction behaviour of service compas# at high abstraction levels.
An abstract interaction is able to represent imfttvza behaviour as a single
interaction at a high abstraction level. An abdtmaieraction is concerned with the

An Abstract Interaction Concept for Designing hatgion Behaviour... 11

results of the interaction behaviour and the cairsts which should be satisfied by
the results, abstracting from the behaviour itdalé have shown the suitability of
the abstract interaction concept in the designndéraction behaviour at high
abstraction levels.

An abstract interaction may have several possiblfnements at a lower
abstraction level and, hence, multiple realisatiofisus, the abstract interaction
concept can be used to extend the approach defimethe Model-Driven
Architecture (MDA) [11]. An abstract interaction yndave not only multiple
realisations at different technology platforms, bigo multiple realisations with
different interaction behaviour. For example, thesign inFig. 2 can be refined
into different interaction behaviour in which thayment interaction is done using
credit card.

The abstract interaction concept supports as mhastyagtion levels as needed
by designers. In some cases, designers prefervim ddimited set of abstraction
levels; each of which has a pre-defined purposaigdemethods defining such a
limited set of abstraction levels can be developsdguidelines in designing
interaction behaviour using the interaction conc>r example, a framework in
[18] defines three generic abstraction levels. Aigh abstraction level, a service
is modelled as a single interaction between a senvser and provider. At a lower
abstraction level, this interaction is refined inthoreography of multiple
interactions. At another lower abstraction levéie tservice provider may be
refined into an orchestration of other service cosifons. The abstract interaction
concept fits within this limited set of abstractiewels.

The abstract interaction concept is applicable iierént abstraction levels.
This capability allows designers to apply the sam@inement patterns and
conformance assessment method consistently. Tleeaation concept does not
require designers to master different design cascemd tools for different
abstraction levels.

In future work, we will identify patterns of interion refinement. Such
patterns may serve as guidelines for designergfinimg an abstract interaction
into an interaction behaviour design. We will aldevelop rules to support
conformance assessment for those patterns. Thermatnd rules should include
time attributes of an interaction. Time attributgs useful for specifying the time
moment and the duration an interaction may occur.

6 References

[1] Baresi L, Heckel R, Théne S, Varré D, (2003) Modgliand validation of service-
oriented architectures: application vs. style. P@JcEuropean Software Engineering
Conf.: 68-77

[2] Benatallah B, Dijkman RM., Dumas M, Maamar Z, (2p@ervice Composition:
Concepts, Techniques, Tools and Trends. Servicen@d Software Engineering:
Challenges and Practices. Idea Group, Inc.: 48-66

[3] Curbera F, Khalaf R, Mukhi N, Tai S, Weerawaran#&803) The Next Step in Web
Services. Communications of the ACM 46(10): 24-28

[4] Dijkman R, Dumas M, (2004) Service-Oriented Desigh: Multi-Viewpoint
Approach. International Journal of Cooperative tnfation Systems 13(4): 337-368

12

(5]
(6]

(7]
(8]

9]

(10]
(11]
(12]
(13]
(14]

[15]
(16]

(17]

(18]

(19]
(20]

[21]
(22]

T. Dirgahayu, D. Quartel, and M. van Sinderen

Dijkman RM, (2006) Choreography-Based Design ofiBess Collaborations. BETA
Working Paper WP-188, Eindhoven University of Teaogy

Emig C, Weisser J, Abeck S, (2006) Development@ASBased Software Systems -
an Evolutionary Programming Approach. Proc. Advancéntl. Conf. on
Telecommunications and Intl. Conf. on Internet &xeb Applications and Services:
182-187

Hamadi R, Benatallah B, (2003) A Petri Net-Based d®lofor Web Service
Composition. Proc. f4Australasian Database Conf.: 191-200

Kramler G, Kapsammer E, Retschitzegger W, Kapp&PG06) Towards Using UML
2 for Modelling Web Service Collaboration Protocdlsteroperability of Enterprise
Software and Applications, Springer: 227-238

Leymann F, Roller D, Schmidt M-T, (2002) Web Seegicand Business Process
Management. IBM Systems Journal 41(2): 198-211

Millard DE, Howard Y, Jam E-R, Chennupati S, Dak€, Gilbert L, Wills GB,
(2006) FREMA Method for describing Web Services @n Service-Oriented
Architecture. Technical Report ECSTR-IAM06-002, ity of Southampton
OMG, (2001) Model Driven Architecture (MDA). ormg@601-07-01

OMG, (2006) Business Process Modeling Notation (BRpecification. dtc/06-02-
01

OMG, (2007) Unified Modeling Language: Superstroetwersion 2.1.1. formal/
2007-02-03

Peltz C, (2003) Web Services Orchestration and &@waphy. IEEE Computer
36(8): 46-52

Peterson JL, (1981) Petri Net Theory and the Madedf Systems. Prentice-Hall
Quartel D, Dijkman R, van Sinderen M, (2004) Metblogjical support for service-
oriented design with ISDL. Proc™@ntl. Conf. on Service Oriented Computing: 1-10
Quartel D, Ferreira Pires L, van Sinderen M, (2002) Architectural Support for
Behaviour Refinement in Distributed Systems Desiipurnal of Integrated Design
and Process Science 6(1): 1-30

Quartel DAC, Steen MWA, Pokraev S, van Sinderen K2D07) COSMO: A
Conceptual Framework for Service Modelling and Rafiient. Information Systems
Frontiers 9: 225-244

Skogan D, Grgnmo R, Solheim I, (2004) Web servimmposition in UML. Proc. 8
IEEE Intl. Enterprise Distributed Object Computi@gnf.: 47-57

Thoéne S, Depke R, Engels G, (2003) Process-OrieRiegible Composition of Web
Services with UML. LNCS 2784: 390-401

White SA, (2005) Using BPMN to Model a BPEL ProcdgBTrends 3(3): 1-18

Zaha JM, Dumas M, ter Hofstede A, Barros A, Ded&e(2006) Service Interaction
Modeling: Bridging Global and Local View. Proc.AEEE Intl. EDOC Conf.: 45-55

