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On the Classification Performance of TAN and  
General Bayesian Networks 

Michael G. Madden
1
 

Abstract.   Over a decade ago, Friedman et al. introduced the Tree Augmented 

Naïve Bayes (TAN) classifier, with experiments indicating that it significantly 

outperformed Naïve Bayes (NB) in terms of classification accuracy, whereas 

general Bayesian network (GBN) classifiers performed no better than NB. This 

paper challenges those claims, using a careful experimental analysis to show that 

GBN classifiers significantly outperform NB on datasets analyzed, and are 

comparable to TAN performance. It is found that the poor performance reported 

by Friedman et al. are not attributable to the GBN per se, but rather to their use of 

simple empirical frequencies to estimate GBN parameters, whereas basic 

parameter smoothing (used in their TAN analyses but not their GBN analyses) 

improves GBN performance significantly. It is concluded that, while GBN 

classifiers may have some limitations, they deserve greater attention, particularly 

in domains where insight into classification decisions, as well as good accuracy, is 

required. 

1 Introduction 

This paper examines the performance of Bayesian networks as classifiers, 

comparing their performance to that of the Naïve Bayes (NB) classifier and the 

Tree-Augmented Naïve Bayes (TAN) classifier, both of which make strong 

assumptions about interactions between domain variables.  

In the experiments performed for this work, described below in Section 3, 

standard Bayesian networks (referred to as General Bayesian Networks, GBNs, to 

distinguish them from NB and TAN) are compared with NB and TAN classifiers 

on 28 standard benchmark datasets. Our experiments indicate that the GBN 

classifier is substantially better than NB, with performance closer to that of TAN. 

This contrasts with the conclusions drawn in the landmark paper on Bayesian 

network classifiers by Friedman et al. (1997). That paper presented results on 

many of the same datasets, showing that GBNs constructed using the minimum 

description length (MDL) score tend to perform no better than NB. That result has 

been widely noted by other authors (e.g. Grossman & Domingos, 2004; Keogh & 
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Pazzani, 2002); in one case the result was interpreted as indicating that NB “easily 

outperforms” GBN.  

Our contention is that it has become „accepted wisdom‟ that GBN classification 

performance is no better than that of NB, and significantly worse than TAN 

(ignoring other considerations such as computational complexity or 

interpretability). Our results indicate that GBN‟s classification performance is 

superior to that of NB and much closer to that of TAN, when the same parameter 

estimation procedure is used for all.  

It turns out that Friedman et al. used simple frequency counts for parameter 

estimation in constructing GBN classifiers, whereas they used parameter 

smoothing in constructing TAN classifiers (see Sec. 2.3 for details). Our 

experiments show that if frequency counts are used for both GBN and TAN, 

neither is much better than NB (Sec. 3.3, Figure 5), but if parameter smoothing is 

used for both, they both perform similarly well (Figure 4). Furthermore, since 

GBN classifiers are commonly constructed through heuristic search, it is possible 

for improved GBN construction algorithms to lead to improved performance. 

The structure of the paper is as follows. Section 2 reviews Bayesian networks 

and the algorithms for constructing GBN and TAN classifiers that are used in this 

paper. Section 3 presents experiments applying NB, TAN and two GBN 

algorithms to classification problems on 28 standard datasets, and identifies why 

the results of this paper are at odds with those of Friedman et al. as mentioned 

above. Finally, Section 4 draws general conclusions about the suitability of GBNs 

as classifiers. 

2 Bayesian Networks and Classification 

As is well known, a Bayesian network is composed of the network structure and 

its conditional probabilities. The structure BS is a directed acyclic graph where the 

nodes correspond to domain variables x1, …, xn and the arcs between nodes 

represent direct dependencies between the variables. Likewise, the absence of an 

arc between two nodes x1 and x2 represents that x2 is independent of x1 given its 

parents in BS. Using the notation of Cooper & Herskovits (1992), the set of parents 

of a node xi in BS is denoted i. The structure is annotated with a set of conditional 

probabilities, BP, containing a term P(Xi | i) for each possible value Xi of xi and 

each possible instantiation i of i  

2.1 Inductive Learning of Bayesian Networks 

Several algorithms have been proposed since the late 1980s for inductive learning 

of general Bayesian networks. Recent developments include the global 
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optimization approach of Silander and Myllymäki (2006), the Greedy Equivalence 

Search algorithm (Chickering, 2002), and the Three-Phase Dependency Analysis 

algorithm (Cheng et al., 2002), though this latter algorithm has subsequently been 

shown to be incorrect (Chickering & Meek, 2006). We evaluate two approaches to 

GBN construction, described in the following subsections, both of which have 

relatively low computational complexity: 
1. The K2 search procedure (Cooper & Herskovits, 1992) in conjunction with 

the Bayesian BDeu scoring metric (Buntine, 1991), which is a refinement 
of the K2 metric 

2. The approach used by Friedman et al. (1997), which combines hill-
climbing search with the MDL score. 

These are both search-and-score methods for construction of GBNs; a search 

heuristic is used to propose candidate networks, and a scoring function is used to 

assess, for any two candidates, which one is more likely given the training data.  

The scoring functions and search procedures are described in greater detail in 

the following sub-sections. Rather can constructing general BN structures, 

restrictions may be placed on the structures; this is described in Section 2.2. 

Typically, the conditional probabilities (parameters) associated with a network are 

not computed from the data until after the structure has been found; parameter 

estimation is described in Section 2.3. 

2.1.1 K2 Search with BDeu Scoring Approach 

If D is a database of training cases, Z is the set of variables in each case in D, and 

BSi
 and BSj

 are two belief-network structures containing exactly those variables 

that are in Z, then the comparison amounts to calculating P(BSi
|D)/P(BSj

|D), which 

in turn reduces to calculating P(BSi
,D)/P(BSj

,D).  

Assume that Z is a set of n discrete variables, where a variable xi in Z has ri 

possible value assignments, (vi1
, …, viri

), and that D has N cases, each with a value 

assignment for each variable in Z. A network structure BS is assumed to contain 

just the variables in Z. Each variable xi in BS has zero or more parents, represented 

as a list i. Let wij denote the jth unique instantiation of i relative to D, and 

assume that there are qi such unique instantiations of i. Let Nijk be defined as the 

number of cases in D in which variable xi has the value vik and i is instantiated as 

wij. Let N'ijk denote a Dirichlet parameter. Let Nij and N'ij be defined as: 


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With these definitions, the BD metric (Heckerman et al., 1995) is defined as: 
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Note that  is the gamma function, defined as (x+1) = x(x), which is closely 

related to the factorial function but defined for real numbers, not just integers. In a 

practical implementation, the logs of terms in Eq. 2 are computed. 

The K2 metric (Cooper & Herskovits, 1992) corresponds to Eq. 2 with all 

Dirichlet exponents set to „uninformative‟ values of N'ijk = 1. Alternative 

uninformative values are proposed by Buntine (1991): 

ii

ijk
qr

N'
N' 

 

(3) 

Using Buntine‟s values, Eq. 2 becomes what Heckerman et al. (1995) term the 

BDeu metric, which has the additional property of being structure-equivalent. This 

is the metric used in the current work. Assuming that all structures are equally 

likely a priori, P(BS) is constant, so to maximize P(BS,D) just requires finding the 

set of parents for each node that maximizes the second inner product of Eq. 2.  

The K2 search procedure requires a node ordering. It operates by initially 

assuming that a node has no parents, and then adding incrementally that parent 

whose addition most increases the probability of the resulting network. Parents are 

added greedily to a node until the addition of no one parent can increase the 

structure probability. This is repeated for all nodes in the sequence specified by 

the node ordering. 

In the experiments of Section 3, the node ordering in each dataset is arbitrarily 

taken to be the order of attributes in the input files, except that the class node is 

always placed first in the order. In addition, the maximum number of parents a 

node may have is limited to 4. 

2.1.2 MDL Scoring Approach 

In constructing GBNs, Friedman et al. (1997) use a scoring function based on the 

minimum description length (MDL) principle. The MDL score of a network B 

given a database of training cases D is: 

)|(log
2

1
)|( DBLLBNDBMDL 

 
(4) 

where |B| is the number of parameters in the network and LL(B | D) denotes the 

log-likelihood of B given D. To calculate LL(B | D), let )(ˆ DP  be the empirical 

probability measure defined by frequencies of events in D. Then: 
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The search procedure used by Friedman et al. is to start with the empty network 

and successively apply local operations that greedily reduce the MDL score 

maximally until a local minimum is found. The local operations applied are arc 

insertion, arc deletion and arc reversal.  
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2.1.3 Classification using a GBN 

A Bayesian network may be used for classification as follows. Firstly, any nodes 

outside of the Markov blanket of the classification node xc may be deleted. Then, 

assume that the value of xc is unknown and the values of all other nodes are 

known. Then, for every possible instantiation of xc, calculate the joint probability 

of that instantiation of all variables in the network given the database D. By the 

definition of a Bayesian network, the joint probability of a particular instantiation 

of all n variables is calculated as: 



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n

i

iiiinn XxPXxXxP
1
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(6) 

By normalizing the resulting set of joint probabilities of all possible 

instantiations of xc, an estimate of the relative probability of each is found. The 

vector of class probabilities may be multiplied by a misclassification cost matrix, 

if available. Note that the classification node is not considered „special‟ when 

building the GBN, and in Eq. 6, xc is just one of the variables x1…xn. 

Although arbitrary inference in a GBN with discrete variables is NP-hard 

(Cooper, 1990), the classification procedure just described just requires Eq. 6 to be 

evaluated once for each possible instantiation of xc; thus its time complexity is 

O(nm rc), where nm is the number of nodes in xc‟s Markov blanket; nm ≤ n.. 

2.2 Restricted Bayesian Classifiers 

Figure 1 schematically illustrates the structure of the Bayesian classifiers 

considered in this paper. The simplest form of Bayesian classifier is Naïve Bayes. 

When represented as a Bayesian network, a Naïve Bayes (NB) classifier has a 

simple structure whereby there is an arc from the classification node to each other 

node, and there are no arcs between other nodes, as illustrated in Figure 1(a). 

Since NB has a fixed structure, learning simply involves estimating the parameters 

according to one of the procedures discussed below in Section 2.3. 

Several researchers have examined ways of achieving better performance than 

NB. Friedman et al. (1997) in particular consider (among other structures) Tree 

Augmented Naïve Bayes (TAN), which allows arcs between the children of the 

classification node xc as shown in Figure 1(b), thereby relaxing the assumption of 

conditional independence. In their approach, each node has xc and at most one 

other node as a parent, so that the nodes excluding xc form a tree structure. 

Optimal TAN structures are constructed by finding the maximum weighted 

spanning tree within a complete graph connecting the nodes, where arcs are 

annotated by the conditional mutual information between all pairs of non-class 

nodes, conditioned on the class node, according to Eq. 7.  
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Figure 1: Illustration of Naive Bayes, TAN and General BN Structures. 

2.3 Parameter Estimation 

Let ijk denote the conditional probability that a variable xi in BS has the value vik, 

for some k from 1 to ri, given that the parents of xi, represented by i, are 

instantiated as wij. Then ijk = P(xi=k|i=wij) is termed a network conditional 

probability. The simplest form of parameter estimation is based on frequency 

counts (referred to as unsmoothed estimates by Friedman et al.): 

ijkf
ijk

ij

N

N
 

 

(8) 

A problem with using Eq. 8 is that it can result in zero estimates for some 

parameters if not all combinations of variables are well represented in the training 

data, resulting in a probability of 0 being computed for some instantiations of all 

variables. One solution is to replace zero estimates by a small positive value.  

As well as using unsmoothed estimates, Friedman et al. use technique based on 

Dirichlet priors that they term parameter smoothing, which boils down to the 

following calculation: 
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where Ni/N = )(ˆ
ixP is the frequency of the given value of xi observed in the 

dataset. (Friedman et al. report that, after experimentation, a value of N0 = 5 was 

chosen.)  

As part of our controlled comparisons, the same parameter smoothing is used 

for all classifiers in the analyses presented below in Section 3. 

To avoid any ambiguity, it should be pointed out that smoothed parameter 

estimates are used only to estimate the conditional probabilities, BP, after the 

network structure, BS, has been determined. TAN and GBN structure learning uses 

simple frequency counts (Eq. 8). 

3 Experiments 

3.1 Methodology 

For this work, the Naïve Bayes, TAN and two general BN algorithms were 

compared using 26 datasets from the UCI repository of Machine Learning datasets 

(Asuncion & Newman 2007). For consistency with previous work in this domain 

(Cheng & Greiner, 2001; Friedman et al., 1977; Keogh & Pazzani, 2002; Madden, 

2003), continuous variables were discretized using the discretization utility of 

MLC++ (Kohavi et al., 1977) with its default entropy-based setting (Dougherty et 

al., 1995) and any cases with missing values were removed. The two general BN 

algorithms are those listed earlier: 
1. GBN-K2: K2 search procedure with the Bayesian BDeu scoring metric  
2. GBN-HC: hill-climbing search with MDL score, following Friedman et al. 

The GBN-HC implementation used in this work is that in WEKA (Bouckaert, 

2004a). The NB, TAN and GBN-K2 algorithms were implemented for this work 

in Common Lisp (code available by email on request). 

Previous comparisons of similar classifiers (Cheng & Greiner, 2001; Friedman 

et al., 1977; Madden, 2003) have estimated classifier accuracy using holdout sets 

for the larger datasets and 5-fold cross validation for smaller datasets. However, it 

has been shown that such analyses may suffer from high sensitivity to the specific 

divisions used (Bouckaert, 2004a). Also, previous analyses have compared 

accuracy figures by simply considering the magnitude of the estimated accuracy 

without performing statistical significance tests (Cheng & Greiner, 2001; 

Friedman et al., 1977), or using t-tests that are not corrected to account for the 

overlap in folds from a multi-fold cross-validation run (Madden, 2003). This latter 

approach has been shown to have a high Type I error (Nadeau & Bengio, 2000).  
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To avoid such problems, the experimental methodology used in this work 

follows the 10 x 10 fold sorted cross-validation approach proposed by Bouckaert 

(2004b), with associated t-tests to measure significance. This has been shown to 

have good replicablility, thereby facilitating future comparisons, and because by 

applying it consistently across all datasets and algorithms, coherent comparisons 

can be drawn. 

3.2 Results  

Table 1 lists the accuracy (and standard deviation of accuracy) of each of the four 

classification algorithms being considered, as measured from 10 runs of 10-fold 

cross-validation on each dataset. In each row, the best of the four classifier results 

are displayed in bold. Specifically, for each dataset, the classifier with the highest 

performance is highlighted in bold and compared with that of the other two 

classifiers, using a paired t-test at the 5% significance level based on the 10x10 

fold sorted cross-validation results. If another‟s performance is not significantly 

different from the best, it is also highlighted, but if the differences between all four 

classifiers are not statistically significant, then none of them are highlighted. 

As these results show, there are no statistical differences between the 

algorithms on 10 of the 26 datasets, at the 5% significance level. In just 2 other 

cases, NB is best (including joint best), in 13 cases TAN is best, in 10 cases GBN-

K2 is best and in 7 cases GBN-HC is best. 

Figure 2 shows two scatter-plots comparing TAN with NB and with GBN-HC. 

Figure 2(a) shows that TAN generally outperforms NB, as was also demonstrated 

in the experiments of Friedman et al. (1997). Figure 2(b) also shows TAN 

outperforming GBN-HC, though the difference in performance is not as marked as 

in the results of Friedman et al. 
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Figure 2: Relative accuracies of: (a) TAN and NB; (b) TAN and GBN-HC. 
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Figure 3: Relative accuracies of: (a) GBN-K2 and NB; (b) GBN-HC and NB. 

Table 1: Classification performance (accuracy  std dev) of four algorithms as measured on 

28 datasets; results in bold are best or joint best, as described in text. 

No. Dataset Naïve Bayes TAN GBN-K2 GBN-HC

1 Adult 84.03 ± 0.53 L 86.15 ± 0.35 W 86.16 ± 0.33 W 86.02 ± 0.48

2 Australian 85.80 ± 4.03 D 85.06 ± 3.90 D 86.22 ± 3.83 D 85.93 ± 4.06

3 Breast Cancer 97.38 ± 1.84 D 96.99 ± 1.88 D 97.32 ± 1.81 D 97.15 ± 1.83

4 Car 85.15 ± 2.74 L 93.96 ± 1.90 W 89.61 ± 2.20 L 86.36 ± 3.15

5 Chess 87.85 ± 1.70 L 92.09 ± 1.39 L 94.45 ± 1.41 W 94.95 ± 1.47

6 Cleve 82.87 ± 6.20 D 81.04 ± 6.77 D 81.07 ± 6.22 D 82.33 ± 6.27

7 Connect-4 72.11 ± 0.63 L 76.43 ± 0.40 L 79.08 ± 0.66 W 73.88 ± 0.70

8 Corral 87.05 ± 9.46 L 99.23 ± 3.19 W 99.62 ± 2.53 W 99.38 ± 2.37

9 DNA Splice 95.26 ± 0.98 L 94.92 ± 1.10 L 95.93 ± 1.05 W 95.81 ± 1.02

10 Flare 80.12 ± 3.47 D 82.65 ± 3.47 D 82.24 ± 3.39 D 82.56 ± 3.48

11 German 74.61 ± 4.31 D 72.07 ± 4.04 D 74.20 ± 3.97 D 73.25 ± 4.07

12 Glass2 81.16 ± 8.68 D 79.37 ± 8.95 D 79.00 ± 9.35 D 77.29 ± 9.86

13 Heart 82.74 ± 6.70 D 83.11 ± 7.30 D 82.30 ± 7.49 D 83.04 ± 7.32

14 Hepatitis 86.38 ± 10.97 D 88.00 ± 11.64 D 87.00 ± 13.29 D 86.38 ± 14.22

15 Letter 74.67 ± 1.05 L 86.28 ± 0.61 W 81.76 ± 0.73 L 75.12 ± 0.72

16 Lymphography 82.16 ± 10.61 D 81.07 ± 9.57 D 77.46 ± 9.47 D 75.06 ± 10.98

17 Mofn-3-7-10 85.34 ± 3.43 L 91.96 ± 2.63 W 86.85 ± 3.56 L 93.04 ± 2.86

18 Nursery 90.29 ± 0.77 L 93.30 ± 0.81 W 91.18 ± 0.89 L 91.68 ± 0.82

19 Pima 75.69 ± 4.42 D 76.37 ± 3.94 D 76.33 ± 4.26 D 76.18 ± 4.27

20 Segment 91.27 ± 1.70 L 95.27 ± 1.49 W 94.64 ± 1.56 W 93.45 ± 1.48

21 Soybean-Large 91.83 ± 3.50 W 92.35 ± 3.08 W 89.22 ± 4.22 L 78.02 ± 6.45

22 Spect 68.53 ± 9.14 L 70.29 ± 8.99 W 68.98 ± 8.50 W 74.19 ± 8.89

23 Tic Tac Toe 69.76 ± 4.45 L 76.32 ± 3.82 W 69.26 ± 4.74 L 68.38 ± 4.83

24 Vehicle 60.62 ± 4.88 L 70.36 ± 4.58 W 67.30 ± 5.18 W 62.50 ± 5.46

25 Vote 90.27 ± 4.30 L 93.84 ± 3.26 W 93.57 ± 3.53 W 95.11 ± 3.03

26 Waveform-21 80.90 ± 1.64 W 81.96 ± 1.70 W 81.67 ± 1.56 W 79.73 ± 1.96
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But what about the claim that GBNs perform as badly as, or even worse than, 

NB? Figure 3 shows two scatter-plots comparing GBN-K2 and GBN-HC with 

NB. In this and subsequent graphs, “A vs B” indicates that A is plotted on the 

vertical axis and B is plotted on the horizontal axis. Visually, points above the 

diagonal are those where classifier A has higher accuracy. Our results do not 

provide evidence for that claim. They show that the classification performance of 

both GBN algorithms is good relative to NB, although the performance of GBN-

K2 is a little better than that of GBN-HC. On the basis of paired t-tests, it is found 

that GBN-K2 is better than NB on 11 datasets whereas NB is better than it on just 

1; likewise, GBN-HC is better than BN on 9 datasets whereas NB is better on 1.  

Furthermore, when GBN-K2, rather than GBN-HC, is compared with TAN, the 

differences between them are not at all pronounced, as shown in Figure 4. 
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Figure 4: Relative accuracies of TAN and GBN-K2. 

3.3 Discussion of Results 

The results presented in Table 2 and illustrated in Figure 3 indicate that GBN 

outperforms NB overall. This conclusion is clearly at variance with the 

experimental results of Friedman et al., who compared GBN and NB on 25 

datasets and reported that GBN was significantly better on 6 and significantly 

worse on 6. (All of those datasets are included in this study except for CRX and 

Glass, which are variants of the Australian and Glass2 datasets that are included.) 

Our GBN-HC algorithm is the same one that they used. 

Differences in experimental methodology might account for some of the 

disparities in conclusions drawn from our work and that of Friedman et al, as their 

experiments may be more prone to Type I errors and have lower replicability. 

However, we believe that parameter estimation has a much more significant 

effect. For the TAN and NB algorithms, they present results using unsmoothed 

(Eq. 8) and smoothed (Eq. 9) parameter estimates. As would be expected, 
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parameter smoothing has little effect on the performance of NB, but it improves 

the performance of TAN since zero probability estimates are more likely to arise 

in more complex structures. However, Friedman et al. present results for GBN 

without smoothing only; they do not present corresponding smoothed GBN 

results, even though one would expect parameter smoothing to improve the 

performance of GBN also. In contrast, the results presented above in Table 2 and 

Figures 2-4 use parameter smoothing for all classifiers. 

To explore this further, we repeated our analyses using unsmoothed parameter 

estimates. Figure 5(a) presents a plot comparing Unsmoothed GBN with 

Unsmoothed NB. These results are qualitatively similar to those of Friedman et 

al.; Unsmoothed GBN is not much better than Unsmoothed NB. However, the 

comparison in Figure 5(b) is also interesting, as it shows that Unsmoothed TAN is 

also no better than Unsmoothed NB. 

In a further set of experiments, we used unsmoothed parameter estimates but 

replaced zero probabilities with small epsilon values. When we did so, the results 

were quite close to the smoothed result of Table 1. We therefore conclude that the 

essential cause of the poor performance of the TAN and GBN classifiers relative 

to NB in Figure 5 may be attributed to the zero probabilities in the computations. 
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Figure 5: Relative Accuracies of: (a) Unsmoothed GBN-HC vs Unsmoothed NB;  

(b) Unsmoothed TAN vs Unsmoothed NB. 

4 Conclusions: Suitability of GBN as a Classifier 

The results of the preceding section have shown that, when TAN and GBN-K2 

classifiers are compared under careful experimental procedures and using the 

same parameter estimation procedure for both, there is little to distinguish between 

them in terms of classification accuracy. 

An advantage of TAN is its low computational complexity, which is O(n2 N). 

However, for a fixed maximum number of parents per node, to complexity of the 



M.G. Madden 

GBN-K2 algorithm is O(n3 N r), which is just a factor (n r) worse. (Here, r is the 

maximum number of different values any node may have.) 

Nonetheless, if GBN classifiers are more expensive to construct than TAN 

classifiers and do not offer greater classification accuracy, why use them? There 

are other possible drawbacks of GBNs as classifiers:  
1. It is often observed in Machine Learning that we should not solve a more 

general problem than required, so why build a full GBN if all that is 
required is a classifier? 

2. GBNs are in general more complex than TAN classifiers, though not 
necessarily; in fact, as discussed below, A GBN classifier may end up with 
fewer arcs than a TAN classifier on the same domain, since not all nodes 
might be within the Markov blanket. 

3. The GBN that best describes the domain as a whole does not necessarily 
correspond to the one that best discriminates between classes, and the 
classification node might potentially be unconnected from the network. 

While aware of these drawbacks, we propose three reasons for their use: 
1. Insightful analysis: In many practical domains, particularly where it is 

required to convince end-users such as scientists or engineers that 
classification decisions are reasonable and logical, it is as important to gain 
insight into the problem as it is to achieve high classification accuracy. 
GBN classifiers support this by modelling the distribution, allowing more 
complex interactions between nodes to be represented than with TAN and 
also potentially identifying nodes that are outside the classification node‟s 
Markov blanket. They also aid in identifying conditional independencies in 
the data, which may also be useful for domain insight. 

2. Representational power: Zhang & Ling (2001) have examined the 
representational power of discrete BNs and have concluded that, if each 
node has at most u parents, a BN can represent parity functions of 
maximum order u. This implies, as would be expected, that GBN has 
greater representational power than TAN which in turn has greater 
representational power than NB.  

3. Appropriate complexity: As noted above, a GBN classifier may have fewer 
arcs than a TAN classifier for the same domain. In TAN, nodes are must 
have the class node as a parent, and a full tree of arcs between non-class 
nodes, so all but two nodes have exactly two parents each. In GBN, there 
are no such constraints; a node may have no parents or several. On the 
Adult dataset for example, the typical GBN had 13 arcs with 0-3 parents 
per node, which is the same number of arcs as Naïve Bayes for the dataset, 
which has exactly one parent per node. The TAN classifier for the Adult 
dataset was more complex, with 25 arcs. On the Connect 4 dataset, Naïve 
Bayes has 13 arcs, TAN has 83 arcs and GBN has a median of 74 arcs. 

GBN approaches are not as widely used for classification tasks as TAN. 

Notable exceptions include the work of Cheng & Greiner (2001), the application 

by Baesens et al. (2002) of Monte Carlo Markov Chain search to constructing 

GBN classifiers, and Grossman & Domingos‟ (2004) algorithm for learning GBNs 

that maximize conditional likelihood. 
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However, a larger number of researchers have analysed TAN and proposed 

improvements. Examples include the work of Keogh and Pazzani (2002) who 

proposed the use of classification accuracy rather than conditional mutual 

information in building TAN-style classifiers; Zhang & Ling (2001), who 

extended Keogh & Pazzani‟s work by using AUC measures; Cerquides and de 

Mántaras ( 2005), who identified theoretical weaknesses in the TAN approach and 

proposed corrections for them; and Garg & Roth (2001) who addressed the 

question of why classifiers such as TAN that make often inaccurate assumptions 

tend to perform well.  

Although the experiments here have shown that the GBN-K2 algorithm has 

quite good classification performance, it is likely that other algorithms would 

perform even better. Given the relative complexity of GBN construction compared 

to TAN construction, improving the performance of GBN classifiers would appear 

to be a topic with some potential for research. A limitation of GBN-K2 is that it 

requires an ordering on nodes. In specific applications it may be possible to 

determine a reasonable node ordering from domain knowledge, but it would be 

interesting to analyse the performance of other algorithms that do not require node 

ordering. That being said, GBN-HC does not require node ordering and its 

performance on the test datasets was slightly weaker than that of GBN-K2, but its 

simple hill-climbing search without restarts is quite limited.  

In the future, it is hoped to analyse more sophisticated algorithms, particularly 

the algorithm of Silander and Myllymäki (2006), which searches for a globally 

optimal network. In order to address the issue noted earlier in this section that the 

optimal GBN for a domain is not necessarily the optimal one for classification, it 

would be necessary to develop an approach that constructs a Markov blanket 

around the classification node. 

Overall, we believe that GBNs may deserve greater attention as classifiers, 

particularly in problem domains where data is plentiful and insight into the 

domain, as well as high accuracy, is required, although work remains to be done to 

optimize them for classification tasks. 
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