
A User-Extensible and Adaptable Parser
Architecture

John Tobin and Carl Vogel

Abstract Some parsers need to be very precise and strict when parsing, yet must al-
low users to easily adapt or extend the parser to parse new inputs, without requiring
that the user have an in-depth knowledge and understanding of the parser’s inter-
nal workings. This paper presents a novel parsing architecture, designed for parsing
Postfix log files, that aims to make the process of parsing new inputs as simple
as possible, enabling users to trivially add new rules (to parse variants of existing
inputs) and relatively easily add new actions (to process a previously unknown cat-
egory of input). The architecture scales linearly or better as the number of rules and
size of input increases, making it suitable for parsing large corpora or months of
accumulated data.

1 Introduction

The architecture described herein was developed as part of a larger project to im-
prove anti-spam defences by analysing the performance of the set of filters currently
in use, optimising the order and membership of the set based on that analysis, and
developing supplemental filters where deficiencies are identified. Most anti-spam
techniques are content-based (e.g. [3, 7, 11]) and require the mail to be accepted
before determining if it is spam, but rejecting mail during the delivery attempt is
preferable: senders of non-spam mail that is mistakenly rejected will receive an im-
mediate non-delivery notice; resource usage is reduced on the accepting mail server
(allowing more intensive content-based techniques to be used on the mail that is
accepted); users have less spam mail to wade through. Improving the performance
of anti-spam techniques that are applied when mail is being transferred via Simple
Mail Transfer Protocol (SMTP)1 is the goal of this project, by providing a platform

John Tobin e-mail: tobinjt@cs.tcd.ie · Carl Vogel e-mail: vogel@cs.tcd.ie
School of Computer Science and Statistics, Trinity College, Dublin 2, Ireland.
Supported by Science Foundation Ireland RFP 05/RF/CMS002.

John Tobin and Carl Vogel

for reasoning about anti-spam filters. The approach chosen to measure performance
is to analyse the log files produced by the SMTP server in use, Postfix [13], rather
than modifying it to generate statistics: this approach improves the chances of other
sites testing and using the software. The need arose for a parser capable of dealing
with the great number and variety of log lines produced by Postfix: the parser must
be designed so that adding support for parsing new inputs is a simple task, because
the log lines to be parsed will change over time. The variety in log lines occurs for
several reasons:

• Log lines differ amongst versions of Postfix.
• The mail administrator can define custom rejection messages.
• External resources utilised by Postfix (e.g. DNS Black List (DNSBL) or policy

servers [14]) can change their messages without warning.

It was hoped to reuse an existing parser rather than writing one from scratch,
but the existing parsers considered were rejected for one or more of the following
reasons: they parsed too small a fraction of the log files; their parsing was too inex-
act; they did not extract sufficient data. The effort required to adapt and improve an
existing parser was judged to be greater than the effort to write a new one, because
the techniques used by the existing parsers severely limited their potential: some ig-
nored the majority of log lines, parsing specific log lines accurately, but without any
provision for parsing new or similar log lines; others sloppily parsed the majority
of log lines, but were incapable of distinguishing between log lines of the same cat-
egory, e.g. rejecting a mail delivery attempt. The only prior published work on the
subject of parsing Postfix log files that the authors are aware of is Log Mail Anal-
yser: Architecture and Practical Utilizations [4], which aims to extract data from
log files, correlate it, and present it in a form suitable for a systems administrator to
search using the myriad of standard Unix text processing utilities already available.
A full state of the art review is outside the scope of this paper but will be included
in the thesis resulting from this work.

The solution developed is conceptually simple: provide a few generic functions
(actions), each capable of dealing with an entire category of inputs (e.g. rejecting a
mail delivery attempt), accompanied by a multitude of precise patterns (rules), each
of which matches all inputs of a specific type and only that type (e.g. rejection by a
specific DNSBL). It is an accepted standard to separate the parsing procedure from
the declarative grammar it operates with; part of the novelty here is in the way that
the grammar is itself partially procedural (each action is a separate procedure). This
architecture is ideally suited to parsing inputs where the input is not fully understood
or does not conform to a fixed grammar: the architecture warns about unparsed
inputs and other errors, but continues parsing as best it can, allowing the developer
of a new parser to decide which deficiencies are most important and require attention
first, rather than being forced to fix the first error that arises.

1 Simple Mail Transfer Protocol transfers mail across the Internet from the sender to one or more
recipients. It is a simple, human readable, plain text protocol, making it quite easy to test and debug
problems with it. The original protocol definition is RFC 821 [10], updated in RFC 2821 [9].

A User-Extensible and Adaptable Parser Architecture

2 Architecture

The architecture is split into three sections: framework, actions and rules. Each will
be discussed separately, but first an overview:

Framework The framework is the structure that actions and rules plug into. It
provides the parsing loop, shared data storage, loading and validation
of rules, storage of results, and other support functions.

Actions Each action performs the work required to deal with a single category
of inputs, e.g. processing data from rejections.

Rules The rules are responsible for classifying inputs, specifying the action
to invoke and the regex that matches the inputs and extracts data.

For each input the framework tries each rule in turn until it finds a rule that
matches the input, then invokes the action specified by that rule.

Decoupling the parsing rules from their associated actions allows new rules to be
written and tested without requiring modifications to the parser source code, signif-
icantly lowering the barrier to entry for casual users who need to parse new inputs,
e.g. part-time systems administrators attempting to combat and reduce spam; it also
allows companies to develop user-extensible parsers without divulging their source
code. Decoupling the actions from the framework simplifies both framework and ac-
tions: the framework provides services to the actions, but does not need to perform
any tasks specific to the input being parsed; actions benefit from having services
provided by the framework, freeing them to concentrate on the task of accurately
and correctly processing the information provided by rules.

Decoupling also creates a clear separation of functionality: rules handle low level
details of identifying inputs and extracting data; actions handle the higher level
tasks of assembling the required data, dealing with the intricacies of the input being
parsed, complications arising, etc.; the framework provides services to actions and
manages the parsing process.

Some similarity exists between this architecture and William Wood’s Augmented
Transition Networks (ATN) [6, 16], used in Computational Linguistics for creating
grammars to parse or generate sentences. The resemblance between the two (shown
in table 1) is accidental, but it is obvious that the two approaches share a similar
division of responsibilities, despite having different semantics.

Table 1 Similarities with ATN

ATN Parser Architecture Similarity

Networks Framework Determines the sequence of transitions or
actions that constitutes a valid input.

Transitions Actions Assembles data and imposes conditions the
input must meet to be accepted as valid.

Abbreviations Rules Responsible for classifying input.

John Tobin and Carl Vogel

2.1 Framework

The framework takes care of miscellaneous support functions and low level de-
tails of parsing, freeing the programmers writing actions to concentrate on writing
productive code. It links actions and rules, allowing either to be improved indepen-
dently of the other. It provides shared storage to pass data between actions, loads
and validates rules, manages parsing, invokes actions, tracks how often each rule
matches to optimise rule ordering (§3.2 [p. 9]), and stores results in the database.
Most parsers will require the same basic functionality from the framework, plus
some specialised support functions. The framework is the core of the architecture
and is deliberately quite simple: the rules deal with the variation in inputs, and the
actions deal with the intricacies and complications encountered when parsing.

The function that finds the rule matching the input and invokes the requested
action can be expressed in pseudo-code as:

for each input:
for each rule defined by the user:

if this rule matches the input:
perform the action specified by the rule
skip the remaining rules
process the next input

warn the user that the input was not parsed

2.2 Actions

Each action is a separate procedure written to deal with a particular category of
input, e.g. rejections. The actions are parser-specific: each parser author will need
to write the required actions from scratch unless extending an existing parser. It is
anticipated that parsers based on this architecture will have a high ratio of rules to
actions, with the aim of having simpler rules and clearer distinctions between the
inputs parsed by different rules. In the Postfix log parser developed for this project
there are 18 actions and 169 rules, with an uneven distribution of rules to actions as
shown in fig. 1 on the facing page. Unsurprisingly, the action with the most asso-
ciated rules is DELIVERY REJECTED, the action that handles Postfix rejecting a
mail delivery attempt; it is followed by SAVE DATA, the action responsible for han-
dling informative log lines, supplementing the data gathered from other log lines.
The third most common action is, perhaps surprisingly, UNINTERESTING: this
action does nothing when executed, allowing uninteresting log lines to be parsed
without causing any effects (it does not imply that the input is ungrammatical or
unparsed). Generally rules specifying the UNINTERESTING action parse log lines
that are not associated with a specific mail, e.g. notices about configuration files
changing. The remaining actions have only one or two associated rules: some ac-
tions are required to address a deficiency in the log files, or a complication that

A User-Extensible and Adaptable Parser Architecture

 0

 10

 20

 30

 40

 50

 60

bo
un

ce

cl
on

e

co
nn

ec
t

de
le

te

di
sc

on
ne

ct

ex
pi

ry

m
ai

l_
to

o_
la

rg
e

pi
ck

up

sm
tp

d_
w

at
ch

do
g

tra
ck

co
m

m
it

m
ai

l_
qu

eu
ed

po
st

fix
_r

el
oa

d

sm
tp

d_
di

ed

tim
eo

ut

un
in

te
re

st
in

g

sa
ve

_d
at

a

de
liv

er
y_

re
je

ct
ed

N
um

be
r o

f r
ul

es

Action

Number of rules

Fig. 1 Distribution of rules per action

arises during parsing; other actions will only ever have one log line variant, e.g. all
log lines showing that a remote client has connected are matched by a single rule
and handled by the CONNECT action.

Using the CONNECT action as an example: it creates a new data structure in mem-
ory for the new client connection, saving the data extracted by the rule into it; this
data will be entered into the database when the mail delivery attempt is complete. If
a data structure already exists for the new connection it is treated as a symptom of a
bug, and the action issues a warning containing the full contents of the existing data
structure, plus the log line that has just been parsed.

The ability to add special purpose actions to deal with difficulties and new re-
quirements that are discovered during parser development is one of the strengths of
this architecture. Instead of writing a single monolithic function that must be modi-
fied to support new behaviour, with all the attendant risks of adversely affecting the
existing parser, when a new requirement arises an independent action can be written
to satisfy it. Sometimes the new action will require the cooperation of other actions,
e.g. to set or check a flag. There is a possibility of introducing failure when modify-
ing existing actions in this way, but the modifications will be smaller and occur less
frequently than with a monolithic architecture, thus failures will be less likely to oc-
cur and will be easier to test for and diagnose. The architecture can be implemented
in an object oriented style, allowing sub-classes to extend or override actions in ad-
dition to adding new actions; because each action is an independent procedure, the
sub-class need only modify the action it is overriding, rather than reproducing large
chunks of functionality.

During development of the Postfix log parser it became apparent that in addition
to the obvious variety in log lines there were many complications to be overcome.
Some were the result of deficiencies in Postfix’s logging (some of which were recti-
fied by later versions of Postfix); others were due to the vagaries of process schedul-
ing, client behaviour, and administrative actions. All were successfully accommo-
dated in the Postfix log parser: adding new actions was enough to overcome several
of the complications; others required modifications to a single existing action to

John Tobin and Carl Vogel

work around the difficulties; the remainder were resolved by adapting existing ac-
tions to cooperate and exchange extra data, changing their behaviour as appropriate
based on that extra data.

Actions may return a modified input line that will be parsed as if read from
the input stream, allowing for a simplified version of cascaded parsing [1]. This
powerful facility allows several rules and actions to parse a single input, potentially
simplifying both rules and actions.

2.3 Rules

Rules categorise inputs, specifying both the regex to match against each input and
the action to invoke when the match is successful. The Postfix log parser stores the
rules it uses in the same SQL database the results are stored in, removing any doubt
about which set of rules was used to produce a set of results; other implementations
are free to store their rules in whatever fashion suits their needs. The framework
warns about every unparsed input, to alert the user that they need to alter or ex-
tend their ruleset; the Postfix log parser successfully parses every log line in the
522 log files it is currently being tested with. The framework requires each rule to
have action and regex attributes; each implementation is free to add any addi-
tional attributes it requires. The Postfix log parser adds attributes for several reasons:
optimising rule ordering (§3.2 [p. 9]); restricting which log lines each rule can be
matched against; and to describe each rule. Keywords in the rule’s regex specify
the data to be extracted from the input, but the Postfix log parser also provides a
mechanism for rules to specify extra data to be saved.

Parsing new inputs is generally achieved by creating a new rule that pairs an ex-
isting action with a new regex. The Postfix log parser supplies a utility based on
Simple Logfile Clustering Tool [12] to aid in producing regexes from unparsed log
lines. Decoupling the rules from the actions and framework enables other rule man-
agement approaches to be used, e.g. instead of manually adding new rules, machine
learning techniques could be used to automatically generate new rules. If this ap-
proach was taken the choice of machine learning technique would be constrained
by the size of typical data sets (see §3 [p. 8]). Techniques requiring the full data set
when training would be impractical; Instance Based Learning [2] techniques that
automatically determine which inputs from the training set are valuable and which
inputs can be discarded might reduce the data required to a manageable size. A
parser might also dynamically create new rules in response to certain inputs, e.g.
diagnostic messages indicating the source of the inputs has read a new configura-
tion file. These avenues of research and development has not been pursued by the
authors, but could easily be undertaken independently.

The architecture does not try to detect overlapping rules: that responsibility is
left to the author of the rules. Unintentionally overlapping rules lead to inconsistent
parsing and data extraction because the first matching rule wins, and the order in
which rules are tried against each input might change between parser invocations.

A User-Extensible and Adaptable Parser Architecture

Overlapping rules are frequently a requirement, allowing a more specific rule to
match some inputs and a more general rule to match the remainder, e.g. separat-
ing SMTP delivery to specific sites from SMTP delivery to the rest of the world.
Allowing overlapping rules simplifies both the general rule and the more specific
rule; additionally rules from different sources can be combined with a minimum of
prior cooperation or modification required. Overlapping rules should have a prior-
ity attribute to specify their relative ordering; negative priorities may be useful for
catchall rules.

Decoupling the rules from the actions allows external tools to be written to de-
tect overlapping rules. Traditional regexes are equivalent in computational power
to Finite Automata (FA) and can be converted to FA, so regex overlap can be de-
tected by finding a non-empty intersection of two FA. The standard equation for FA
intersection (given for example in [17]) is: FA1∩FA2 = (FA1∪FA2), which has
considerable computation complexity. Perl 5.10 regexes are more powerful than
traditional regexes: it is possible to match correctly balanced brackets nested to
an arbitrary depth, e.g. /ˆ[ˆ<>]*(<(?:(?>[ˆ<>]+)|(?1))*>)[ˆ<>]*$/
matches z<123<pq<>rs>j<r>ml>s. Perl 5.10 regexes can maintain an arbi-
trary state stack and are thus equivalent in computational power to Pushdown Au-
tomata (PDA) or Context-Free Languages (CFL), so detecting overlap may require
calculating the intersection of two PDA or CFL. The intersection of two CFL is not
closed, i.e. the resulting language cannot always be parsed by a CFL, so intersec-
tion may be intractable in some cases e.g.: a∗bncn ∩ anbnc∗ → anbncn. Detecting
overlap amongst n regexes requires calculating n(n−1)/2 intersections, resulting in
O(n2x) complexity, where O(x) is the complexity of calculating intersection. This is
certainly not a task to be performed every time the parser is used: detecting overlap
amongst the Postfix log parser’s 169 rules would require calculating 14196 intersec-
tions.

It is possible to define pathological regexes which fall into two main categories:
regexes that match every input, and regexes that consume excessive amounts of CPU
time during matching. Defining a regex to match all inputs is trivial: /ˆ/ matches
the start of every input. Usually excessive CPU time is consumed when a regex with
a lot of alteration and variable quantifiers fails to match, but successful matching is
generally quite fast (see [5] for in-depth discussion).

The example rule in table 2 matches the following sample log line logged by
Postfix when a remote client connects to deliver mail:

connect from client.example.com[192.0.2.3]

Table 2 Example rule

Attribute Value

regex ˆconnect from (__CLIENT_HOSTNAME__)\[(__CLIENT_IP__)\]$
action CONNECT (described in §2.2 [p. 4])

John Tobin and Carl Vogel

2.4 Architecture Characteristics

Matching rules against inputs is simple: The first matching rule determines the
action that will be invoked: there is no backtracking to try alternate rules, no
attempt is made to pick a best rule.

Line oriented: The architecture is line oriented at present: there is no facility for
rules to consume more input or push unused input back onto the input stream.
This was not a deliberate design decision, rather a consequence of the line ori-
ented nature of Postfix log files; more flexible approaches could be pursued.

Context-free rules: Rules can not take into account past or future inputs. In
context-free grammar terms the parser rules could be described as:
<input> 7→ rule-1|rule-2|rule-3| . . . |rule-n.

Context-aware actions: Actions can consult the results (or lack of results) of pre-
vious actions during execution, providing some context sensitivity.

Cascaded parsing: Actions can return a modified input to be parsed as if read from
the input stream, allowing for a simplified version of cascaded parsing [1].

Transduction: The architecture can be thought of as implementing transduction:
it takes data in one form (log files) and transforms it to another form (a database);
other formats may be more suitable for other implementations.

Closer to Natural Language Processing than using a fixed grammar: Unlike tradi-
tional parsers such as those used when compiling a programming language, this
architecture does not require a fixed grammar specification that inputs must ad-
here to. The architecture is capable of dealing with interleaved inputs, out of
order inputs, and ambiguous inputs where heuristics must be applied — all have
arisen and been successfully accommodated in the Postfix log parser.

3 Results

Parsing efficiency is an obvious concern when the Postfix log parser routinely needs
to parse large log files. The mail server which generated the log files used in testing
the Postfix log parser accepts approximately 10,000 mails for 700 users per day;
median log file size is 50 MB, containing 285,000 log lines — large scale mail
servers would have much larger log files. When generating the timing data used
in this section, 93 log files (totaling 10.08 GB, 60.72 million log lines) were each
parsed 10 times and the parsing times averaged. Saving results to the database was
disabled for the test runs, because the tests are aimed at measuring the speed of the
Postfix log parser rather than the speed of the database. The computer used for test
runs is a Dell Optiplex 745 described in table 3 on the next page, dedicated to the
task of gathering statistics from test runs. Parsing all 93 log files in one run took 2
hours, 19 minutes and 17.293 seconds, mean throughput is 68.994 MB (435,942.882
log lines) parsed per minute; median throughput when parsing files separately was
80.854 MB (480,569.173 log lines) parsed per minute.

A User-Extensible and Adaptable Parser Architecture

Table 3 Computer used to generate statistics

Component Component in use

CPU 1 dual core 2.40GHz Intel R© CoreTM2 CPU, with 32KB L1 and 4MB L2 cache.
RAM 2GB 667 MHz DDR RAM.
Hard disk 1 Seagate Barracuda 7200 RPM 250GB SATA hard disk.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10 20 30 40 50 60 70 80 90

Pa
rs

in
g

tim
e,

 lo
g

fil
e

si
ze

,
 a

nd
 n

um
be

r o
f l

og
 li

ne
s

Log file

Parsing time in seconds
Log file size in MB
Number of log lines in tens of thousands

Fig. 2 Parsing time, log file size, and number of log lines

3.1 Architecture Scalability: Input Size

An important property of a parser is how parsing time scales relative to input size:
linearly, polynomially, or exponentially? Figure 2 shows the parsing time in seconds,
log file size in MB, and number of log lines in tens of thousands, for each of the 93
log files. The lines on the graph run roughly in parallel, giving the impression that
the algorithm scales linearly with input size. This impression is borne out by fig. 3
on the next page: the ratios are tightly banded across the graph, showing that the
algorithm scales linearly. The ratios increase (i.e. improve) for log files 22 and 62–
68 despite their large size; that unusually large size is due to mail forwarding loops
resulting in a greatly increased number of mails delivered and log lines generated.

3.2 Rule Ordering

Figure 4 on the following page shows the number of log lines in the 93 log files
matched by each of the Postfix log parser’s 169 rules. The top ten rules match
85.036% of the log lines, with the remainder tailing off similar to a Power Law dis-
tribution. Assuming that the distribution of log lines is reasonably consistent over
time, parser efficiency should benefit from trying more frequently matching rules

John Tobin and Carl Vogel

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70 80 90

R
at

io
 o

f n
um

be
r o

f l
og

 li
ne

s
an

d
lo

g
fil

e
si

ze
 to

 p
ar

si
ng

 ti
m

e

Log file

Ratio of number of log lines in tens of thousands to parsing time in seconds
Ratio of log file size in MB to parsing time in seconds

Fig. 3 Ratio of number of log lines and log file size to parsing time

 0

 1000000

 2000000

 3000000

 4000000

 5000000

 6000000

 7000000

 8000000

 9000000

 0 20 40 60 80 100 120 140 160

N
um

be
r o

f l
og

 li
ne

s

Rule

Number of log lines matched

Fig. 4 Number of log lines matched by each rule

before those which match less frequently. To test this hypothesis three full test runs
were performed with different rule orderings:

optimal Hypothetically the best order: rules which match most often will be tried
first.

shuffled Random ordering, intended to represent an unsorted rule set. Note that
the ordering will change every time the parser is executed, so 10 different
orderings will be generated for each log file in the test run.

reverse Hypothetically the worst order: the most frequently matching rules will
be tried last.

Figure 5 on the next page shows the parsing times of optimal and reverse order-
ings as a percentage of shuffled ordering parsing time. This optimisation provides a
mean reduction in parsing time of 14.785% with normal log files, 5.102% when a
mail loop occurs and the distribution of log lines is unusual. Optimal rule ordering
has other benefits, described in §3.3 on the facing page.

A User-Extensible and Adaptable Parser Architecture

 0%

 20%

 40%

 60%

 80%

 100%

 120%

 0 10 20 30 40 50 60 70 80 90

Pa
rs

in
g

tim
e

re
la

tiv
e

to
 s

hu
ffl

ed
 o

rd
er

in
g

Log file

Reverse ordering
Shuffled ordering
Optimal ordering

Fig. 5 Parsing time relative to shuffled ordering

3.3 Architecture Scalability: Number of Rules

How any architecture scales as the number of rules increases is important, but it is
particularly important for this architecture because it is expected that typical parsers
will have a large number of rules. There are 169 rules in the full Postfix log parser
ruleset (parsing 522 log files), but the minimum number of rules required to parse
the 93 log files is 115, 68.04% of the full ruleset. A second set of test runs was per-
formed using the minimum ruleset, and the parsing times compared to those gener-
ated using the full ruleset: the percentage parsing time increase when using the full
ruleset instead of the minimal ruleset for optimal, shuffled and reverse orderings is
shown in fig. 6 on the next page. Clearly the increased number of rules has a notice-
able performance impact with reverse ordering, and a lesser impact with shuffled
ordering. The optimal ordering shows a mean increase of 0.63% in parsing time for
a 46.95% increase in the number of rules. These results show that the architecture
scales extremely well as the number of rules increases, and that optimally ordering
the rules enables this.

3.4 Coverage

The Postfix log parser has two different types of coverage to be measured: log lines
correctly parsed, and mail delivery attempts correctly understood (the former is a
requirement for the latter to be achieved). Improving the former is less difficult, as
usually it just requires new rules to be written; improving the latter is more difficult
and intrusive as it requires adding or changing actions, and it can be much harder to
notice that a deficiency exists.

Correct parsing of log lines must be measured first. Warnings are issued for any
log lines that are not parsed; no such warnings are issued while parsing the 93 log

John Tobin and Carl Vogel

-4%

-2%

 0%

 2%

 4%

 6%

 8%

 10%

 12%

 14%

 0 10 20 30 40 50 60 70 80 90

Pe
rc

en
ta

ge
 p

ar
si

ng
 ti

m
e

in
cr

ea
se

 o
f

m
ax

im
um

 ru
le

se
t o

ve
r m

in
im

um
 ru

le
se

t

Log file

Reverse ordering
Shuffled ordering
Optimal ordering

Fig. 6 Percentage parsing time increase of maximum ruleset over minimum ruleset

files, therefore there are zero false negatives. False positives are harder to quantify:
manually verifying that the correct rule parsed each of the 60,721,709 log lines
is infeasible. A random sample of 6,039 log lines (0.00994% of 60,721,709) was
parsed and the results manually verified by inspection to ensure that the correct
rule’s regex matched each log line. The sample results contained zero false positives,
and this check has been automated to ensure continued accuracy. The authors are
confident that zero false positives occur when parsing the 93 log files.

The proportion of mail delivery attempts correctly understood is much more dif-
ficult to determine accurately than the proportion of log lines correctly parsed. The
implementation can dump its state tables in a human readable form; examining these
tables with reference to the log files and database is the best way to detect misunder-
stood mail delivery attempts. The Postfix log parser issues warnings when it detects
any errors or discrepancies, alerting the user to the problem. There should be few or
no warnings during parsing, and when parsing is finished the state table should only
contain entries for mail delivery attempts starting before or ending after the log file.
A second sample of 6000 log lines was parsed with all debugging options enabled,
resulting in 167,448 lines of output. All 167,448 lines were examined in conjunc-
tion with the log segment and a dump of the resulting database, verifying that for
each of the log lines the Postfix log parser performed correctly. The implementation
produced 4 warnings about deficiencies in the log segment, 10 mails correctly re-
maining in the state tables, and 1625 correct entries in the database: it produced 0
false positives. No error or warning messages were produced, therefore there were
no false negatives. Given the evidence detailed above, the authors are confident that
zero false positives or negatives occur when parsing the 93 log files.

Experience implementing the Postfix log parser shows that full input coverage is
relatively easy to achieve with this architecture, and that with enough time and effort
full understanding of the input is possible. Postfix log files would require substantial
time and effort to correctly parse regardless of the architecture used; this architecture
enables an iterative approach to be used (similar to Stepwise Refinement [15]), as is
practiced in many other software engineering disciplines.

A User-Extensible and Adaptable Parser Architecture

4 Conclusion

This architecture’s greatest strength is the ease with which it can be adapted to deal
with new requirements and inputs. Parsing a variation of an existing input is a trivial
task: simply modify an existing rule or add a new rule with an appropriate regex and
the task is complete. Parsing a new category of input is achieved by writing a new
action and appropriate rules; quite often the new action will not need to interact with
existing actions, but when interaction is required the framework provides the neces-
sary facilities. The decoupling of rules from actions allows different sets of rules to
be used with the same actions, e.g. a parser might have actions to process versions
one and two of a file format; by choosing the appropriate ruleset the parser will
parse version one, or version two, or both versions. Decoupling also allows other ap-
proaches to rule management, as discussed in §2.3 [p. 6]. The architecture makes it
possible to apply commonly used programming techniques (such as object orienta-
tion, inheritance, composition, delegation, roles, modularisation, or closures) when
designing and implementing a parser, simplifying the process of working within a
team or when developing and testing additional functionality. This architecture is
ideally suited to parsing inputs where the input is not fully understood or does not
follow a fixed grammar: the architecture warns about unparsed inputs and other er-
rors, but continues parsing as best it can, allowing the developer of a new parser to
decide which deficiencies are most important and require attention first, rather than
being forced to fix the first error that arises.

The data gathered by the Postfix log parser provides the foundation for the future
of this project: applying machine-learning algorithms to the data to analyse and
optimise the set of anti-spam defences in use, followed by identifying patterns in
the data that could be used to write new filters to recognise and reject spam rather
than accepting it. The parser provides the data in a normalised form that is far easier
to use as input to new or existing algorithm implementations than trying to adapt
each algorithm to extract data directly from the log files. The current focus is on
clustering and decision trees to optimise the order in which rules are applied; future
efforts will involve using data gathered by the parser to train and test new filters. This
task is similar to analysing a black box application based on its inputs and outputs,
and this approach could be applied to analyse the behaviour of any system given
sufficient log messages to parse. An alternate approach to black box optimisation
that uses application profiling in conjunction with the application’s error messages
to improve the error messages shown to users is described in [8]; profiling data may
be useful in supplementing systems that fail to provide adequate log messages.

The Postfix log file parser based on this architecture provides a basis for systems
administrators to monitor the effectiveness of their anti-spam measures and adapt
their defences to combat new techniques used by those sending spam. This parser
is a fully usable application, built to address a genuine need, rather than a proof
of concept whose sole purpose is to illustrate a new idea; it deals with the oddities
and difficulties that occur in the real world, rather than a clean, idealised scenario
developed to showcase the best features of a new approach.

John Tobin and Carl Vogel

References

1. Abney, S.: Partial parsing via finite-state cascades. Nat. Lang. Eng. 2(4), 337–344 (1996).
DOI http://dx.doi.org/10.1017/S1351324997001599. URL http://portal.acm.org/
citation.cfm?coll=GUIDE&dl=GUIDE&id=974705. Last checked 2008/08/20

2. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1),
37–66 (1991). DOI http://dx.doi.org/10.1023/A:1022689900470. URL http://portal.
acm.org/citation.cfm?id=104717. Last checked 2008/07/29

3. Ahmed, S., Mithun, F.: Word stemming to enhance spam filtering. First Conference on Email
and Anti-Spam CEAS 2004 (2004). URL http://www.ceas.cc/papers-2004/
167.pdf. Last checked 2008/08/20

4. Aiello, M., Avanzini, D., Chiarella, D., Papaleo, G.: Log mail analyzer: Architecture and
practical utilizations. Trans-European Research and Education Networking Association
(2006). URL http://www.terena.nl/events/tnc2006/core/getfile.php?
file_id=770. Last checked 2008/08/20

5. Friedl, J.E.F.: Crafting an efficient expression. Mastering regular expressions pp. 185–222
(2006). ISBN-10: 0596528124

6. Gazdar, G., Mellish, C.: Natural language processing in prolog. An Introduction to Computa-
tional Linguistics pp. 63–98 (1989). ISBN-10: 0201180537

7. Graham, P.: A plan for spam. Hackers & Painters pp. 121–129 (2004). ISBN-10: 0–596–
00662–4

8. Ha, J., Rossbach, C.J., Davis, J.V., Roy, I., Ramadan, H.E., Porter, D.E., Chen, D.L., Witchel,
E.: Improved error reporting for software that uses black-box components. SIGPLAN Not.
42(6), 101–111 (2007). DOI http://doi.acm.org/10.1145/1273442.1250747. URL http:
//portal.acm.org/citation.cfm?id=1250747. Last checked 2008/08/20

9. Klensin, J.C.: Rfc 2821 — simple mail transfer protocol. The Internet Society Requests
for Comment (2001). URL http://www.faqs.org/rfcs/rfc2821.html. Last
checked 2008/08/20

10. Postel, J.B.: Rfc 821 — simple mail transfer protocol. The Internet Society Requests for
Comment (1982). URL http://www.faqs.org/rfcs/rfc821.html. Last checked
2008/08/20

11. Sculley, D., Wachman, G.M.: Relaxed online svms in the trec spam filtering track. Text RE-
trieval Conference (TREC) (2007). URL http://trec.nist.gov/pubs/trec16/
papers/tuftsu.spam.final.pdf. Last checked 2008/08/20

12. Vaarandi, R.: A data clustering algorithm for mining patterns from event logs. IP Op-
erations and Management, 2003. (IPOM 2003). 3rd IEEE Workshop on pp. 119–126
(2003). URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
1251233. Last checked 2008/08/20

13. Venema, W.: Postfix home page. Postfix documentation (2008). URL http://www.
postfix.org/. Last checked 2008/08/20

14. Venema, W.: Postfix smtp access policy delegation. Postfix documentation (2008).
URL http://www.postfix.org/SMTPD_POLICY_README.html. Last checked
2008/08/20

15. Wirth, N.: Program development by stepwise refinement. Commun. ACM 14(4), 221–227
(1971). DOI http://doi.acm.org/10.1145/362575.362577. URL http://portal.acm.
org/citation.cfm?doid=362575.362577. Last checked 2008/08/20

16. Woods, W.A.: Transition network grammars for natural language analysis. Commun.
ACM 13(10), 591–606 (1970). URL http://portal.acm.org/citation.cfm?
id=362773. Last checked 2008/08/20

17. Zafar, N.A., Sabir, N., Ali, A.: Construction of intersection of nondeterministic finite automata
using z notation. Proceedings of World Academy of Science, Engineering and Technology 30,
591–596 (2008)

