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Abstract.   This paper presents a software package that allows chemists to analyze 

spectroscopy data using innovative machine learning (ML) techniques. The 

package, designed for use in conjunction with lab-based spectroscopic instruments, 

includes features to encourage its adoption by analytical chemists, such as having 

an intuitive graphical user interface with a step-by-step ‘wizard’ for building new 

ML models, supporting standard file types and data preprocessing, and 

incorporating well-known standard chemometric analysis techniques as well as 

new ML techniques for analysis of spectra, so that users can compare their 

performance. The ML techniques that were developed for this application have 

been designed based on considerations of the defining characteristics of this 

problem domain, and combine high accuracy with visualization, so that users are 

provided with some insight into the basis for classification decisions. 

1 Introduction 

This work has been motivated by the need for more accurate analysis of 

spectroscopic data from mixtures of materials. Raman spectroscopy has been 

chosen as the specific target for this work, though the techniques developed are 

equally applicable to other forms of molecular spectroscopy. 

Molecular spectroscopic techniques such as infra-red (IR), near infra-red 

(NIR), and Raman spectroscopy are widely used in analytical chemistry to 

characterise the molecular structure of materials, by measuring the radiant energy 

absorbed or scattered in response to excitation by an external light source [1]. 

When monochromatic light illuminates a material, a very small fraction is 

inelastically scattered at different wavelengths to the incident light; this is Raman 

scattering, and is due to the interaction of the light with the vibrational and 

rotational motions of the molecules. Thus, the Raman spectrum can be used as a 

molecular fingerprint. Ferraro et al. [2] provide an overview of Raman 

spectroscopy.  
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At the outset of this work, consideration was given to the key defining 

characteristics of this problem domain, which would inform the development of 

ML algorithms and associated software, as listed below.  

 The dimensionality of the data is high, with typically 500-2000 data points 

per sample and the data is easily obtained.  However, carefully-curated 

training samples are typically more difficult and expensive to obtain, so 

often one may have fewer than 100 samples available for 

training/calibration, particularly if the samples are mixtures of materials. 

 A substance may give rise to multiple peaks along a spectrum, with local 

correlations in the data along the spectrum. Thus, it is best to avoid 

assuming that data points are independent attributes.  

 In a mixture, peaks from the component substances may overlap or mask 

each other. 

 Some materials fluoresce under the external illumination, resulting in a 

baseline that grows steadily along the spectrum rather than being level. 

 The intensity (Y-axis) is arbitrary, depending on equipment and 

experimental settings, so some form of normalisation may be necessary. 

 There may be noise in the signal due to instrumentation, external 

interference, or inaccuracies in the recorded composition of materials.  

 

Some of these may be observed in Figure 1, which shows the Raman spectra of 

three pure substances: caffeine, glucose and cocaine. 
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Figure 1. Raman spectra of three substances.  

Previous publications have described some of the specific ML techniques that 

have been developed for this work [4, 5, 6, 7]. This paper focuses on the system‟s 

architecture and design, paying attention to features that facilitate its use by the 
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target population of end users, who are typically analytical chemists without prior 

experience of using machine learning. 

2 Review 

In the domain of analytical chemistry, software tools for advanced spectral 

analysis typically implement techniques from a field known as chemometrics. 

Chemometric techniques are based on the use of the statistical transformation 

technique of Principal Component Analysis (PCA), a classical statistical method 

for transforming attributes of a dataset into a new set of uncorrelated attributes 

called principal components (PCs). The key idea is that this allows reduction of 

the data to a smaller number of dimensions, with low information loss, simply by 

discarding some PCs. Each PC is a linear combination of the original inputs and 

each PC is orthogonal, which therefore eliminates the problem of collinearity. 

SIMCA (Soft Independent Modeling of Class Analogy) is the most widely used 

chemometric classification technique [8]. In binary classification, SIMCA 

generates a separate PCA model for the set of samples of both classes. In 

prediction, the distance of a test sample to either model is calculated. Statistical 

tests are then used to determine if the test sample belongs to either class.  

For quantitative analysis, Partial Least Squares (PLS) is a widely used 

chemometric technique [8]. PLS is a two-step multivariate regression method, 

which first reduces the data using PCA (using concentration information to extract 

the PC scores) and then performs linear regression on the PC scores. 

Both SIMCA and PLS are industry standards for advanced spectral analysis. 

However, some researchers have applied machine learning methods to this 

domain, for example: decision trees [10]; Naïve Bayes [11]; Artificial Neural 

Network (ANN) [12]; and Support Vector Machine (SVM) [13]. Some machine 

learning methods appear to be unsuited to dealing with spectral data, including 

Naïve Bayes, because of its independence assumption, and k-NN, which does not 

work as well in high-dimensional spaces. These methods require some form of 

data transformation or reduction in order to be useful in the spectral domain.  

The most commonly-used machine learning technique for spectral analysis is 

the ANN, another technique for which data reduction is advised. The ANN has 

been shown to give better results than PLS and PCR in regression analysis and it 

is particularly regarded for its ability to model non-linear relationships in the data 

[12]. However, chemometric techniques have not always been found to be inferior 

to the ANN [13]. A key problem with the ANN is that their use is considered by 

many to be a „black art‟: finding the right network structure (number of hidden 

nodes, type of threshold function) and the selection of initial connection weights 

can be a problem in the generation of an ANN model, all of which has a direct 

impact on the performance achieved. The ANN is therefore less suitable for use by 

non-experts in its use, which may often be the case in the analytical chemistry 
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domain. Another often-cited failing of the ANN is that it does not lend itself easily 

to human interpretation and does not provide any added insight into the data, a key 

requirement for spectral analysis. In contrast, PCA can be used to generate 2D or 

3D views of a spectral dataset, by which clusters or outliers may be discerned.  

A final key issue with the use of machine learning methods for spectral analysis 

is that none of these techniques have been designed or tailored specifically for 

spectral applications. PCA-based techniques, which have been used in the field of 

spectral analysis since the early 1970s, are still the most widely used techniques in 

commercial applications. However, if the above issues were addressed, the 

potential of machine learning for dealing with the challenges faced in 

spectroscopic analysis could be realized. The provision of innovative machine 

learning techniques, which are developed specifically for spectral analysis and can 

improve on the performance of existing chemometric techniques, is one of the key 

motivations behind the software package described in this paper. One of these new 

techniques is based on the SVM, a machine learning method that has been more 

recently identified as being suited to the analysis of high-dimensional spectral data 

[13]. However, SVMs have not been extensively tested on Raman spectral data, 

prior to the work that is the subject of this paper. 

 

Figure 2. Overview of system architecture. 
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3 Architecture & User Interface 

The architecture of the system is shown in Figure 2. It has four main components: 

1. A Spectra Database: this stores spectra from samples of known composition 

are stored 

2. A Machine Learning Module: using this, the user may select an algorithm, 

configure its parameters and build a model by applying the algorithm to data 

selected from the database 

3. A Model Library, storing previously-built models 

4. A GUI (Graphical User Interface): this allows data from a spectroscopy 

instrument to be retrieved and displayed, and analysed using one or more 

models from the Model Library. 

These components are described in the sub-sections that follow. 

3.1 Spectra Database 

The software package includes a database structure and front-end, designed to 

store both pure materials and mixtures of materials; mixtures are distinguished by 

being defined in terms of the proportions of each of their components. A view of 

the database front-end is shown in Figure 3. 

For all materials, the Chemical Abstracts Service (CAS) registry number is 

stored; this is a unique identifier that links the substance to a wide variety of 

information about it3. Other information about its manufacturer, its common 

names and its data collection process is also stored. The database front-end allows 

searching by name or CAS number and includes graphical display of spectra. 

3.2 Model Library & Machine Learning Module  

The Model Library (shown schematically in Figure 2) has a „plug-in‟ architecture: 

at startup, the package scans a specific directory for models, which are loaded 

dynamically. Thus, in addition to models supplied with the software, new models 

can be provided to a user or built using the software. The reason for having 

multiple models is that different models may work with different targets (e.g. 

distinguish between different white powders; predict the concentration of cocaine 

in a sample) or may have been built using different analytical techniques (e.g. 

linear regression; support vector machine). 

                                                           
3 http://www.cas.org/expertise/cascontent/registry/regsys.html  

http://www.cas.org/expertise/cascontent/registry/regsys.html
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Figure 3. Screen-shot of Spectra Database. 

The Machine Learning Module provides functionality for those users who wish 

to build their own models. A conventional supervised learning approach is 

followed. In a laboratory setting, samples are prepared with carefully controlled 

composition. Their spectra are then collected; these form a labelled training set 

from which a classification or regression model may be built using any 

appropriate machine learning technique. The model‟s accuracy may be optionally 

evaluated by holding out a specified percentage of the training data, loading a test 

set, or using repeated cross-validation runs. The model is then added automatically 

to the Model Library, so that it may be used to analyse new samples. 

To facilitate its use, the Machine Learning Module uses a step-by-step „wizard‟ 

approach. As shown in Figure 4, the user begins by selecting a target substance for 

the model from the database, then selecting the rest of the data to that will be 

included in the training set. Functionality is provided to „auto-select‟ the training 

set, by scanning the databases for all samples that include the target material, and 

then all other samples that contain materials that occur in mixtures with the target 

material. After that, the user may choose to apply pre-processing operations such 

as normalisation, smoothing using an n-point moving average, or k-th order 

Savitzky-Golay derivative [3].  

Next, as shown in Figure 5, the user may chose an analysis method from a tree-

structured list of ML methods specific to this work as well as some standard ML 

methods and chemometric methods. Depending on the method chosen, parameters 

may be specified; sensible defaults are provided. 
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Figure 4. Selecting the target material and training data. 

 

Figure 5. Selecting a model generation method and specifying parameters. 

Finally, the user chooses what form of evaluation to use to measure the 

performance of the model being built, using the options shown in Figure 6. 

 

Figure 6. Selecting a method for model evaluation. 

Having specified this information, the model is built automatically, and the 

evaluation results are displayed for the user to review. The model is automatically 

added to the Model Library so that it is available for further use. 
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3.3 Graphical User Interface 

The GUI allows users to work with the library of machine learning models in an 

intuitive way. When a spectrum file is loaded, it is displayed in the main graphics 

pane, with ancillary data relating to it on the left pane, as shown in Figure 7.  

 

Figure 7. Main user interface screen with a spectrum loaded. 

To assist in examining data, the user may choose to apply the pre-processing 

operations described previously, and see their effects immediately. The user can 

then select a model from the model library and apply it to the spectrum; the model 

output is displayed in the right pane. If a classification model has been chosen, the 

output will list the material(s) predicted to be present. In the case of a regression 

model, the concentrations of materials will be listed. Depending on the model, a 

confidence factor associated with predictions may also be displayed. The user may 

select materials from the model predictions, to have their spectra overlaid on the 

original spectrum. 

Significant effort has been put into the design of the system, to minimise risk of 

user error, bearing in mind that typical users may not be experienced in working 

with machine learning. For example, the models include information about what 

pre-processing steps (e.g. normalisation, smoothing or derivatives) were applied to 

its training data, as well as the spectrum range and sampling frequency of the 

training data. When a new spectrum is being analysed, it is automatically pre-

processed and resampled if required.  
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4 Evaluation 

This section evaluates the analytical chemistry software package in two ways, 

firstly considering the new machine learning techniques it provides, and then 

considering its broader functionality, including the insight it provides for users. 

4.1 Evaluation of Performance of Machine Learning Techniques 

The new ML techniques in the software package are based on the principle of 

incorporating specific spectral domain knowledge into their design. They include: 

1. Spectral Attribute Voting (SAV): an ensemble-based approach that generates 

models for each point on a spectrum and also uses the shape of the spectral 

profile (i.e. peaks and troughs) in the generation of these models. 

2. Weighted Spectral Kernel (WS Kernel): this approach uses an SVM with a 

custom kernel that is designed to take the shape of the spectral profile into 

account when comparing spectra. The WS Kernel also incorporates the pure 

spectrum of a target that is to be analysed. Modifications of the standard 

Linear and RBF kernels have been developed using this approach. 

3. Improved Genetic Programming (GP): this technique uses a fitness function 

designed to optimise the assurance levels associated with discovered rules, 

so as to reduce the likelihood of misclassification of future samples [5]. 

Initial research into the above techniques focussed on direct comparisons with 

closely related ML techniques in addition to comparisons with chemometric 

techniques. The SAV method was shown to significantly outperform a number of 

ensemble techniques (e.g. AdaBoost and Bagging) in the classification of 

substances based on Raman spectra [7]. Similarly, previous experiments have 

shown that SVMs using WS kernels significantly improve on the performance of 

standard kernel SVMs, especially in spectral classification tasks [6]. 

The evaluation presented here examines the performance of the new ML 

techniques that were developed specifically for this application, along with 

standard chemometric techniques. The performance evaluation considers two 

separate tasks: the classification and quantification of materials. 

For classification, WSLinear SVM (the WS Kernel approach combined with a 

standard Linear kernel), SAV and the standard SIMCA technique are applied to 

the classification of acetonitrile, an industrial solvent, based on Raman spectra. 

The dataset used for this set of experiments comprises 74 samples: 53 samples 

containing acetonitrile and 21 without acetonitrile. Stratified cross-validation was 

used to ensure that the same distribution of acetonitrile and non-acetonitrile 

samples was present in the training and test sets. The dataset was also normalised 

prior to this analysis, so that the intensity values of each sample ranged from a 

minimum of 0 to a maximum of 1. Table 1(a) reports the average error achieved 
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by each technique in a 5x10-fold cross-validation test; the standard deviation of 

this error is also included. The average error is determined as follows: calculate 

the error rate over each run and then calculate average error over the five runs. 

Similarly, the standard deviation is based on the five test run averages. 

The SIMCA analysis was undertaken using the Unscrambler multivariate 

analysis software package (V8.0, CAMO AS, Trondheim, Norway). For SIMCA 

based classification, separate models were constructed for both classes (samples 

with target and samples without target). A significance level of 5% was used for 

each classification step. The WSLinear Kernel SVM used an internal 3-fold cross-

validation on the training set to determine the optimal settings for SVM and 

kernel. The SAV method used default settings with a decision tree as the base 

classifier. The results of Table 1(a) clearly show that the new ML techniques 

improve on the classification performance of SIMCA.  

Table 1. Comparing standard chemometric methods with new Machine Learning methods for:  

(a) identification of Acetonitrile; (b) quantification of Cocaine concentration 

Acetonitrile Classification %Error  Cocaine Quantification %Error 

Chemometrics: SIMCA 8.65±2.23  Chemometrics: PLS 5.225 

New ML Techniques   New ML Techniques  

WSLinear Kernel SVM 2.16±1.54  WSLinear Kernel SVM 4.433 

Spectral Attribute Voting 1.08±1.13  WSRBF Kernel SVM 3.704 

 

The second phase of this evaluation compares the performance of two variants 

of the WS Kernel SVM technique, WSLinear and WSRBF, against PLS for the 

quantification of cocaine. The cocaine dataset comprises the spectra of 36 samples 

containing varying amounts of cocaine. More details of this dataset are given in 

Madden & Ryder [14]. Table 1(b) shows the average root mean squared error of 

predication (RMSEP) achieved by each method in the quantification of cocaine. 

This is computed using leave-one-out cross-validation: for each sample in turn, 

that sample was removed from the dataset and the remainder was used to build a 

model, which was then used to predict the concentration of cocaine in the sample 

that had been removed. This type of test was chosen due to the small dataset size. 

The PLS performance is taken from Madden & Ryder [14], which used the same 

cocaine dataset. As with the classification experiments, these results show that the 

new ML techniques have better accuracy than the standard PLS technique. 

4.2 Evaluation of Functionality 

In the domain of analytical chemistry, commonly used analysis packages include 

the Unscrambler (CAMO AS) and Grams/AI (Thermo Scientific). However, the 

analytical chemistry software described in this paper has several features that are 

not available in other packages: 
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 As well as providing standard chemometric analysis techniques, it provides 

a range of standard ML analysis techniques  

 It has new spectral ML techniques, such as Weighted Spectral Kernel 

SVMs and Spectral Attribute voting, that tend to outperform other 

techniques and are not available in any other package 

 It includes distinctive features to enable analytical chemists to apply ML in 

their work while minimising risk of errors, such as automatically applying 

appropriate pre-processing steps when analysing a spectrum with a model 

 Its step-by-step model-building wizard leads non-experts in ML through 

the process of building new ML models 

 Unlike most other analytical chemistry packages, it provides functionality 

for best-practice evaluation of the performance of new models, in particular 

supporting repeated n-fold cross-validation. 

4.3 Evaluation of Insight into Decisions 

The new ML techniques described above have been designed to provide novel 

visualisations that can provide domain experts (e.g. analytical chemists) with 

added insight into the data under analysis. For example, Figure 8, reproduced from 

[7], shows a typical visualisation generated by the SAV technique that is part of 

this software package. This figure highlights the points selected in the 

classification of 1,1,1-trichloroethane in a mixture of solvents. Positive points can 

be interpreted as providing significant evidence that the target (1,1,1-

trichloroethane) is contained in the material being analysed, whereas Negative 

points provide evidence that it is not. In Figure 8, positive evidence greatly 

outweighs negative evidence, so the conclusion is that the target is present.  

Figure 8 also shows that the presence or absence of 1,1,1-trichloroethane was 

determined using points principally located on a large peak at 520 cm-1 and a 

smaller peak at 720 cm-1. The 520 cm−1 band is the C-Cl stretch vibration and 

would be expected to be the primary discriminator. The large peak at 3000 cm-1 is 

largely ignored as this area corresponds to the C-H bond region of the spectrum, 

which is less helpful in classification as all of the solvent in the dataset contained 

C-H bonds. This correlation between points chosen and chemical structure of the 

target in question provides the user with a direct way of understanding the basis 

for decisions, and serves to reassure the user that predictions being made by the 

software are reasonable. 

While Figure 8 shows a visualisation generated from the SAV technique, 

equivalent visualisations may be generated using the other techniques listed in 

Section 4.1. (Visualisations for one of these, the improved GP technique, have 

been presented previously [5].) An interesting aspect of this is that visualisations 

can be generated even when SAV uses a relatively „opaque‟ ML technique such as 
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an ANN as its base classifier. Similarly, useful visualisations can be generated 

from the WS Kernel technique, even in the context of an SVM with RBF kernel. 

 

Figure 8. Spectrum of 100% 1,1,1-trichloroethane showing points selected by SAV technique [7] 

5 Commercial Benefits 

This software package specifically addresses the problem of identifying the 
components in mixtures, based on their spectra. For a wide range of real-world 
applications, it is essential to be able to assess the composition of mixtures 
accurately. For example: 

 First Responders: The ML techniques developed for this work can aid the 

identification of household poisons, unlabelled medicines, and hazardous 

materials, in combination with portable instrumentation.  

 Law Enforcement and Forensics: Drug concentration is useful intelligence that 

indicates where on the „supply chain‟ a narcotics seizure has originated. By 

being able to identify the diluting agents, more intelligence can be provided to 

law enforcement agencies. 

 Pharmaceutical Industry and Process Analytical Technologies: This software is 

applicable in a diverse range of analytical area from raw materials quality 

control (QC), formulation QC, tablet production, polymorph analysis, and 

characterisation of hazardous materials. 

 Environment: Raman instruments, in conjunction with the analysis techniques 

developed for this work, can be used to identify unknown chemicals and other 

materials, and determine the concentrations of components. 

Although much of this work has considered applications to Raman 

spectroscopy, the software package is equally applicable to other molecular 

spectroscopy techniques, so it has potential for impact in a wide range of 

application domains. 
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6 Conclusions and Observations 

This paper has presented an innovative analytical chemistry software package that 

enables chemists to use machine learning analysis techniques in their work. As has 

been described, it has a range of features to ensure a good user experience and to 

minimise risk of user error.  

A key advantage of this new software package is that it allows analytical 

chemists make use of powerful and novel machine learning techniques, which 

have been specifically designed to handle the characteristics of spectral data. The 

use of a step-by-step model-building wizard means that these techniques can be 

adopted without requiring expert knowledge of machine learning. Furthermore, as 

demonstrated in Section 4, its classification accuracy is superior to that of 

techniques conventionally used in this domain. Its model-based approach also has 

lower CPU and storage requirements than direct matching against a database, so 

that the approach could potentially be deployed on handheld portable instruments. 

This paper will conclude with some broader observations drawn from the 

experience of developing this software package. Firstly, for a ML practitioner, 

tackling new domains and working with new datasets are always rewarding, as 

they motivate the development of new algorithms. A helpful starting point is to 

consider the characteristics of the data and identify any characteristics that may 

violate standard assumptions. Secondly, close collaboration with domain experts 

is invaluable, since they are best positioned to identify appropriate pre-processing 

techniques, as well as to perform baseline analyses using industry standard 

techniques. Their role is also important in interpreting results, sanity-checking 

conclusions and assessing the value of new work. Naturally, domain experts are 

essential when developing software requirements and designing user interfaces.  

Related to this, it must be observed that the benefit of investing effort to 

develop a good user interface is that it aids end-users in evaluation and encourages 

adoption of the software. To encourage adoption, however, it is even more 

important to provide users with insight into the basis for decisions; in this work, it 

was determined in consultation with chemists that they would find it informative 

to see what parts of the spectrum most strongly contribute to decisions.  

Finally, users are not in general prepared to sacrifice performance accuracy in 

order to gain insight/visualisation. However, in our experience, when the ML 

techniques are tailored to the characteristics of the application domain and are 

designed to enable specific forms of visualisation, this can have a positive effect 

on classification performance.  

Further information and evaluations are available from www.AnalyzeIQ.com.  

http://www.analyzeiq.com/
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