Skip to main content

Abstract

The simple idea of having IP traffic directly transported over optical wavelength division multiplexing (WDM) technology (“IP over WDM”) has been envisioned as the future for the telecommunication infrastructure.

The key point in this infrastructure becomes the switching layer between ubiquitous IP-centric networks and WDM physical layer. An intense debate has been ongoing about which model to adopt, aiming at identifying the degree of optical transparency and the proper flexibility of optical interconnection. Expected migration of switching functions from electronic to optics will be gradual and will take place in several phases. The first phase is presented in this chapter. It is characterized by the use of the wavelength as a switching granularity; the terms optical circuit switching (OCS), wavelength switching, and wavelength routed network recently wavelength switched optical network (WSON) are commonly used and interchangeable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.internetworldstats.com/

  2. 2.

    http://www.net.internet2.edu/i2network/daily-report/historic-aggregate-traffic.html

  3. 3.

    http://www.ietf.org/html.charters/ccamp-charter.html

References

  1. Banejee, D. and Mukherjee, B. (1996). A practical approach for routing and wavelength assignment in large wavelength-routed optical networks. IEEE Journal on Selected Areas in Communications 14(5), 903–908.

    Article  Google Scholar 

  2. Banerjee, A., Drake, J., Lang, J., et al. (2001). Generalized multiprotocol label switching: An overview of signaling enhancements and recovery techniques. IEEE Communications Magazine 39(3), 144–151.

    Google Scholar 

  3. Birman, A. and Kershenbaum, A. (1995). Routing and wavelength assignment methods in single-hop all-optical networks with blocking. In: Proceedings of the Fourteenth IEEE Infocom, pp. 431–438.

    Google Scholar 

  4. Brungard, D. (2005). Requirements for generalized multi-protocol label switching (GMPLS) routing for the automatically switched optical network (ASON). RFC 4258, Internet Engineering Task Force.

    Google Scholar 

  5. Chan, K.M. and Yum, T.S.P. (1994). Analysis of least congested path routing in WDM lightwave networks. In: Proceedings of the Thirteenth IEEE Infocom, pp. 962–969.

    Google Scholar 

  6. Chu, X. and Li, B. (2005). Dynamic routing and wavelength assignment in the presence of wavelength conversion for all-optical networks. IEEE/ACM Transaction on Networking 13(3), 704–715.

    Article  Google Scholar 

  7. Dutta, R. and Rouskas, G.N. (2000). A Survey of Virtual Topology Design Algorithms for Wavelength Routed Optical Networks. Optical Networks Magazine, 1(1), 73–89.

    Google Scholar 

  8. Finn, S.G., Medard, M.M., and Barry, R.A. (1997). A novel approach to automatic protection switching using trees. IEEE International Conference in Communication.

    Google Scholar 

  9. Guidotti, A., Rafaelli, C., and González de Dios, O. (2007). Burstification effect on the TCP synchronization and congestion window mechanisms. In: Proceedings of the International Workshop on Optical Burst Switching (WOBS), pp. 24–28.

    Google Scholar 

  10. Halabi, S. (2003). Metro Ethernet. Cisco Press/McGraw-Hill, New York.

    Google Scholar 

  11. Hall, K.L. and Rauschenbach, K.A. (1998). 100-Gbit/s bitwise logic. Optics Letters 23(16), 1271–1273.

    Article  Google Scholar 

  12. Harai, H., Murata, M., and Miyahara, H. (1997). Performance of alternative routing methods in all-optical switching networks. In: Proceedings of the Sixteenth IEEE Infocom, vol. 2, pp. 516–524.

    Article  Google Scholar 

  13. Zang, H., Jue, J. P. and Mukherjee, B. (2000). A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks. Optical Networks Magazine 1(1) 47–60.

    Google Scholar 

  14. ITU-T Rec. G.7041/Y.1303: Generic framing procedure (GFP) (2005).

    Google Scholar 

  15. ITU-T Rec. G.7042/Y.1305: Link capacity adjustment scheme (LCAS) for virtual concatenated signals (2004).

    Google Scholar 

  16. ITU-T Rec. G.707/Y.1322: Network node interface for the synchronous digital hierarchy (SDH) (2003).

    Google Scholar 

  17. ITU-T Rec. G.7715/Y.1706: Architecture and requirements for routing in the automatically switched optical networks (2002).

    Google Scholar 

  18. ITU-T Rec. G.783: Characteristics of synchronous digital hierarchy (SDH) equipment functional blocks (2004).

    Google Scholar 

  19. ITU-T Rec. G.806: Characteristics of transport equipment—Description methodology and generic functionality (2004).

    Google Scholar 

  20. ITU-T Rec. G.807/Y.1302: Requirements for automatic transport networks (ASTN) (2001).

    Google Scholar 

  21. ITU-T Rec. G.8080/Y.1304: Architecture for the automatically switched optical network (ASON) (2001).

    Google Scholar 

  22. ITU-T Rec. X.85/Y.1321: IP over SDH using LAPS (2001).

    Google Scholar 

  23. Jajszczyk, A. (2004). Control plane for optical networks: The ASON approach. China Communications 1(1), 113–122.

    Google Scholar 

  24. Jajszczyk, A. (2005). Automatically switched optical networks: Benefits and requirements. IEEE Optical Communication Supplement, IEEE Communications Magazine 43(2), S8–S13.

    Article  Google Scholar 

  25. Jeong, G. and Ayanoglu, E. (1996). Comparison of wavelength-interchanging and wavelength-selective cross-connects in multiwavelength all-optical networks. In: Proceedings of the Fifteenth IEEE Infocom, pp. 156–163.

    Google Scholar 

  26. Karasan, E. and Ayanoglu, E. (1998). Effects of wavelength routing and selection algorithms on wavelength conversion gain in WDM optical networks. IEEE/ACM Transaction on Networking 6(2), 186–196.

    Article  Google Scholar 

  27. Kompella, K. and Rekhter, Y. (2005). Label switched paths (LSP) hierarchy with generalized multi-protocol label switching (GMPLS) traffic engineering (TE). RFC 4206, Internet Engineering Task Force.

    Google Scholar 

  28. Kovacevic, M. and Acampora, A.S. (1996). Benefits of wavelength translation in all-optical clear-channel networks. IEEE Journal on Selected Areas in Communications 14(5), 868–880.

    Article  Google Scholar 

  29. Labs, B. Bellcore traces. Available at http://ita.ee.lbl.gov/html/contrib/BC.html

  30. Li, B. and Chu, X. (2003). Routing and wavelength assignment vs. wavelength converter placement in all-optical networks. IEEE Optical Communication Supplement, IEEE Communications Magazine 41(8), S22–S28.

    Google Scholar 

  31. Li, L. and Somani, A. (1999). Dynamic wavelength routing using congestion and neighborhood information. IEEE/ACM Transactions on Networking 7(5), 779–786.

    Article  Google Scholar 

  32. Malis, A. and Simpson, W. (1999). PPP over SONET/SDH. RFC 2615, Internet Engineering Task Force.

    Google Scholar 

  33. Mannie, E. and Papadimitriou, D. (2004). Generalized multi-protocol label switching (GMPLS) extensions for synchronous optical network (SONET) and synchronous digital hierarchy (SDH) control. RFC 3946, Internet Engineering Task Force.

    Google Scholar 

  34. Mokhtar, A. and Azizoglu, M. (1998). Adaptive wavelength routing in all-optical networks. IEEE/ACM Transaction on Networking 6(2), 197–206.

    Article  Google Scholar 

  35. Mukherjee, B.: Optical Communications Networks. McGraw-Hill, New York (1997).

    Google Scholar 

  36. Norros, I. (1995). On the use of fractional Brownian motion in the theory of connectionless networks. IEEE Journal on Selected Areas in Communications 13(6), 953–962.

    Article  Google Scholar 

  37. Odlyzko, A.M. (2003). Internet traffic growth: Sources and implications. In: Optical Transmission Systems and Equipment for WDM Networking II, B.B. Dingel, W. Weiershausen, A.K. Dutta, and K.-I. Sato, eds., Proceedings of SPIE, vol. 5247, pp. 1–15.

    Article  Google Scholar 

  38. OIF-E-NNI-Sig-01.0: Intra-Carrier E-NNI Signaling Specification (2004).

    Google Scholar 

  39. OIF-ENNI-OSPF-01.0: External Network-Network Interface (E-NNI) OSPF-Based Routing—1.0 (intra-Carrier) Implementation Agreement (2007).

    Google Scholar 

  40. OIF-G-Sig-IW-01.0: Signaling Protocol Interworking of ASON/GMPLS Network Domains (2008).

    Google Scholar 

  41. OIF-UNI-01.0-R2-Common: User Network Interface (UNI) 1.0 Signaling Specification, Release 2: Common Part (2004).

    Google Scholar 

  42. OIF-UNI-01.0-R2-RSVP: RSVP Extensions for User Network Interface (UNI) 1.0 Signaling, Release 2 (2004).

    Google Scholar 

  43. OIF-UNI-02.0-Common: User Network Interface (UNI) 2.0 Signaling Specification: Common Part (2008).

    Google Scholar 

  44. OIF-UNI-02.0-RSVP: User Network Interface (UNI) 2.0 Signaling Specification: RSVP Extensions for User Network Interface (UNI) 2.0 (2008).

    Google Scholar 

  45. Okamoto, S., Otani, T., Sone, Y., et al. (2006). Field trial of signaling interworking of multi-carrier ASON/GMPLS network domains. In: Proceedings of OSA Optical Fiber Communications Conference OFC 2006, pp. 1–13.

    Google Scholar 

  46. Papadimitriou, D., Ong, L., Sadler, J., et al. (2005). Requirements for generalized MPLS (GMPLS) signaling usage and extensions for automatically switched optical network (ASON). RFC 4139, Internet Engineering Task Force.

    Google Scholar 

  47. Papadimitriou, D., Ong, L., Sadler, J., et al. (2006). Evaluation of existing routing protocols against automatic switched optical network (ASON) routing requirements. RFC 4652, Internet Engineering Task Force.

    Google Scholar 

  48. Ramamurthy, B. and Mukherjee, B. (1996). Wavelength conversion in WDM networking. IEEE Journal on Selected Areas in Communications 16(7), 868–880.

    Google Scholar 

  49. Ramaswami, R. and Sirvajan, K. (1995). Routing and wavelength assignment in all-optical networks. IEEE/ACM Transactions on Networking 3(5), 489–500.

    Article  Google Scholar 

  50. Ramaswami, R. and Sirvajan, K. (1996). Design of logical topologies for wavelength-routed optical networks. IEEE Journal on Selected Areas in Communications 14(5), 840–851.

    Article  Google Scholar 

  51. Rosen, E.C., Viswanathan, A., and Callon, R. (2001). Multiprotocol label switching architecture. RFC 3031, Internet Engineering Task Force.

    Google Scholar 

  52. Simeonidou, D., et al. (2004). Optical network infrastructure for Grid. Grid Forum Draft, GFD-I.036.

    Google Scholar 

  53. Simpson, W. (1994). PPP in HDLC-like framing. RFC 1662, Internet Engineering Task Force.

    Google Scholar 

  54. Simpson, W. (1994). The point-to-point protocol (PPP). RFC 1661, Internet Engineering Task Force.

    Google Scholar 

  55. Subramaniam, S. and Barry, R.A. (1997). Wavelength assignment in fixed-routing WDM networks. In: Proceedings of the IEEE Internatinal Conference on Communications (ICC 1997), vol. 1, pp. 406–410.

    Google Scholar 

  56. Todimala, A. and Ramamurthy, B. (2003). Congestion-based algorithms for online routing in optical WDM mesh networks. In: Communication, Internet and Information Technology, pp. 43–48.

    Google Scholar 

  57. VanBreda, M. (2005). Architectures for end-to-end video delivery. Broadband World Forum. URL http://www.iec.org/events/2005/bbwf/presentations/index.html.

  58. Zhang, X. and Qiao, C. (1998). Wavelength assignment for dynamic traffic in multi-fiber WDM networks. In: Proceedings of the Seventh IEEE International Conference on Computer Communications and Networks (ICCCN 1998), pp. 479–485.

    Google Scholar 

  59. Zhang, Z. and Campora, A. (1995). A heuristic wavelength assignment algorithm for multi-hop WDM networks. IEEE/ACM transactions on Networking 3(3), 281–288.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Careglio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Careglio, D. et al. (2009). Introduction to IP over WDM. In: Aracil, J., Callegati, F. (eds) Enabling Optical Internet with Advanced Network Technologies. Computer Communications and Networks. Springer, London. https://doi.org/10.1007/978-1-84882-278-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-278-8_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-277-1

  • Online ISBN: 978-1-84882-278-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics