Ada for Software Engineers (Second Edition with Ada 2005)

Mordechai Ben-Ari

Ada for Software Engineers
(Second Edition with Ada 2005)

@ Springer

Mordechai Ben-Ari, BSc, MSc, PhD
Weizmann Institute of Science
Rehovot 76100

Israel

ISBN: 978-1-84882-313-6 e-ISBN: 978-1-84882-314-3

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2009921268

First published 1998

© John Wiley & Sons 1998

© Springer-Verlag London Limited 2009

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted
under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or trans-
mitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of
reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing Agencies.
Enquiries concerning reproduction outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a specific
statement, that such names are exempt from the relevant laws and regulations and therefore free for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that
may be made.

Printed on acid-free paper

Springer Science+Business Media
springer.com

Preface

Albert Einstein once said everything should be made as simple as possible, but not simpler.
Einstein could have been talking about programming languages, as the landscape is strewn
with “simple” languages that, several versions later, have 500-page reference manuals!

The truth is that we expect a lot of our programming languages. We demand support for en-
capsulation and abstraction, type checking and exception handling, polymorphism and more.
Ada, unlike other languages which grew by the gradual addition of features, was designed
as a coherent programming language for complex software systems. Ada for Software Engineers
(ASE) is written to equip you with the knowledge necessary to use the Ada programming lan-
guage to develop software systems.

Although Ada never achieved the popularity of Java and the C-something languages, it
remains the programming language of choice for reliable software. Every time you step on an
airplane or a fast train, you are quite literally trusting your life to software written in Ada.
Given the low level of reliability of much of the software we use daily, I can only regret that the
use of Ada is not more widespread, and I hope that this book will encourage more software
engineers to give Ada a chance.

Intended audience

The book is intended for software engineers making the transition to Ada, and for upper-level
undergraduate and graduate students, including those who have had the good fortune to study
Ada as their first programming language. No specific knowledge of Ada is assumed; the pre-
requisites are a basic knowledge of computer science and computer systems, and at least two
years of programming experience. As the title implies, if you are a software engineer or training
to become one, this book is for you.

vi Preface

Structure of the book

The complexity of modern programming languages leaves textbook writers with a painful
dilemma: either gloss over the gory details, or write books that are heavy enough to be classi-
fied as lethal weapons. Is there another way? A concise description of Ada is freely available:
the Ada Reference Manual (ARM) [7], which is the document defining the language standard.
The ARM has a reputation for being ponderous reading meant for “language lawyers.” Never-
theless, I believe that—with a bit of guidance—software engineers can learn to read most of the
ARM. ASE is based upon two premises: (a) it is best to learn the individual language constructs
within the context of actual programs, and (b) if the learning is based upon the terminology
and concepts used in the language standard, you will be able to use the ARM as your primary
reference manual.

The Ada language will be taught using a few relatively large case studies, rather than a
large number of small examples each crafted to demonstrate a particular construct or rule. Ex-
perienced programmers know that the key to mastering a programming language is not to
memorize the syntax and semantics of individual constructs, but to learn how to integrate the
constructs into language-specific paradigms. We will need to gloss over details when explain-
ing a case study; rest assured that everything will eventually be explained. Certain sections are
marked with an asterisk and can be omitted during your initial study of Ada. This material is
not necessarily more difficult, but you can’t learn everything at once, and these are topics that
can be left for your second reading of the book.

The chapters in the book can be divided into five parts and three appendices. The first two
parts contain the core concepts of Ada and should probably be read first and in sequence (skip-
ping the starred sections, of course). The others chapters can be read as necessary.

1. After an introductory chapter, Chapters 2-5 quickly cover elementary language constructs
such as statements, subprograms, arrays, records and pointers that should be familiar from
your previous programming experience.

2. The second part is based upon the progressive development of a case study demonstrating
the Ada constructs for programming-in-the-large (including object-oriented programming):
packages and private types (Chapter 6), type extension, inheritance, class-wide types and
dynamic polymorphism (Chapter 7-8), and generics (Chapter 9).

3. Chapters 10-14 cover other topics and are more or less independent of the previous ones:
exceptions, the type system in depth, access types (pointers), numerics and input-output.

4. The fourth part contains material on program structure (Chapter 15), the container library
(Chapter 16), and interfaces (Chapter 17).

5. Chapters 18-22 include topics broadly covered by the term systems programming: multitask-
ing, hardware interfaces, and real-time and distributed systems.

A special feature of the book is the comprehensive Glossary (Appendix A), which explains
the ARM terminology with examples. In addition, discussions in the text always contain ref-
erences to the relevant paragraphs in the ARM. The Index of ARM Sections will be invaluable
when you begin to use the ARM as a reference manual.

Preface vii

At the end of each chapter are Projects and Quizzes. Projects are non-trivial programming
exercises, many of which ask you to extend the case studies in the text. Quizzes are not routine
exercises as the term is usually used; they are intended help you understand the finer points
of the Ada language, and can be skipped until you have significant experience programming
with Ada. Each quiz is a small Ada program; you are to examine it and decide what will hap-
pen when the program is compiled, and—if the program contains executable statements and
compiles successfully—the result of the execution. Appendix B Hints refers you to the rele-
vant clauses of the ARM from which you should be able to find the answers to the quizzes
before looking at Appendix C Answers. (To save space, with and use clauses for Ada.Text_IO,
Ada.Integer_IO and Ada.Exceptions are omitted.)

Supplementary material and links

All the case studies, quizzes and programs in the book were compiled and executed. The full
source code is available in the software archive at:

* http://www.springer.com/978-1-84882-313-6.

The programs were developed using the GNAT compiler for Ada 2005. It is available in com-
mercial, academic and free versions; see:

e https://libre.adacore.com.
There are two comprehensive websites on Ada:

* ACM Special Interest Group on Ada (SIGAda), http://www.sigada.org,
¢ Ada Resource Association (ARA), http://www.adaic.com.

From these websites you can download documents such as the ARM, and find links to compiler
vendors, support software, relevant conferences, and other resources.

Ada 2005

This book was original written for the Ada 95 version of the language. That edition is out of
print and I have used the occasion of the publication of a new version of Ada, Ada 2005, to
expand and improve the book. Constructs of Ada 2005 are freely used, but sections that use
them are annotated to indicate which constructs are new. The software archive for the previous
edition of the book will remain freely available.

viii Preface

Acknowledgments

First edition: I would like to thank Michael Feldman, Kevlin Henney, Richard Riehle, Reuben
Sumner, Tucker Taft and Peter Wegner for reviewing the manuscript, and Simon Plumtree of
John Wiley for his support and assistance.

Second edition: I am grateful to Edmond Schonberg for his constant help as I learned Ada 2005.
I am indebted to Robert Duff for his comprehensive review that enabled me to correct many
bugs in the text. The staff at AdaCore has been extremely helpful answering my queries on the
GNAT compiler. I would like to thank Beverley Ford and the staff at Springer for their friendly
and efficient handling of the publishing issues that I raised.

Mordechai (Moti) Ben-Ari
Rehovot, 2008

Contents

Preface v
1 The Language fora ComplexWorld il 1
1.1 Programming or software engineering?.............. 1
1.2 Reliable software engineering............. i i 1
1.3 Programming languages for software engineering 2
14 Ada for software engineeringol 3
1.5 Thedevelopmentof Adac. i i 3
1.6 The AdaReference Manual i 6
1.7 Casestudies.ot 11
2 FirstStepsin Ada 13
2.1 Casestudy: country of origin i 13
2.2 Library units and context clauses............... oo 15
23 Input-output........ 15
2.4 Attributes for string conversiono oo 15
25 Statements 16
2.6 EXCeptions ... 18
2.7 Ty PES et 19
2.8 Objects. 23
2.9 EXPIESSIONS ...ttt 23
210 SUbtypes 25
211 Lexical elementsuuiinuiii i 28
3 Subprograms ... 31
3.1 Parametermodes 32
32 Overloading....... ... 34
3.3 Parameter associations and default expressions 36
3.4 OPeratorso.ii i 37

ix

Contents

3.5 Blockstatement®......... 38
3.6 Implicit dereferencing® 39
ATTaYS . . 41
41 Casestudy: fill and justify text 41
42 AITay YPeS .ot 46
4.3 Constrained array subtypes and objects*.................. ool 54
4.4 Type conversion for arrays*.............. i 55
4.5 Operations on one-dimensional arrays*................... il 55
4.6 The context of array aggregates® i 56
Elementary Data Structures.............. i 59
51 Case study: array priority queuel 59
52 Records 62
5.3 Case study: tree priority queue il 63
5.4 ACCESS L PS. . oot 66
Packages and Abstract Data Types ..., 73
6.1 Modularization 73
6.2 Case study: priority queue package—version1.............................. 74
6.3 Case study: priority queue package—version2.............................. 79
6.4 Case study: priority queue package—version3............., 81
6.5 Case study: priority queue package—version4.............................. 82
6.6 Case study: priority queue package—version5.................. 86
6.7 Case study: priority queue package—version6.............................. 88
6.8 Nonlimited private types* 89
6.9 Limited types that are not private*ol 94
6.10 Initialization of limited types* i 95
Type Extension and Inheritance................ 99
7.1 Case study: discrete event simulation.................... 100
72 Tagged types 101
7.3 Primitive operations i 105
74 Overriding an operation............ i i i 106
7.5 The package bodies of the casestudy 107
7.6 Class-wide types ...t 109
7.7 Dynamicdispatching 113
78 Typesand packages...............oiiiiiiiii 117

7.9 Encapsulation and child packages............... oo 118

Contents xi

10

11

Type Extension and Inheritance (Continued) 125
8.1 Designated receiver syntaxt 125
8.2 TyPe CONVEISIONottt i e i 126
8.3 Extensionaggregates............ i 127
84 Abstracttypes 129
85 Nullprocedures i 130
8.6 Overriding indicators i 132
8.7 Objects of class-widetype 133
8.8 View conversion and redispatching*.............. oo ool 134
8.9 Multiple controlling operands® 135
8.10 Dispatching on the functionresult*........ L 136
8.11 Indirect derivation™ it 138
812 Freezing™. 138
8.13 Implementation of dispatching™............ 139
@31 =] (- 143
9.1 Generic declaration and instantiation.............. ... i, 144
9.2 Thecontractmodel i e 146
9.3 Generic formal subprogram parametersoooiiiiiiiiiiii. 148
9.4 Generic formal array types i 150
9.5 General access types® i 152
9.6 Generic formal objects*.......... 153
9.7 Indefinite type parameters®.......... 154
9.8 Formal package parameters®............ot 155
9.9 Generic children® o i 162
9.10 The fine print in the contract model*ol 163
Exceptions and Run-Time Checks i, 171
10.1 Declaring and raising exceptions i il 171
10.2 Handling eXCeptionsc.iiuiiiiiiiiiiiii i 173
10.3 Propagating exceptionso 174
10.4 Package Exceptions® i 176
10.5 Re-raising exceptions™. ... 178
10.6 Saving exceptions™ 181
10.7 Suppressing checks® 184
10.8 ASSertioNS™ 186
Composite Types. 189
11.1 Charactersand strings oo i 189
11.2 Multibyte characters and strings* il 190
11.3 Casestudy:dot2dot......... ..o 193

11.4 DiSCrimINaNtS . ..ottt e e e et e e e e e e 202

Xii

12

13

14

15

Contents

11.5 Variant recordsottt e 204
11.6 Unconstrained typest 207
11.7 Discriminants of private types® i 208
11.8 Inheriting discriminants* i 209
11.9 Untagged derived types* 211
11.10 Untagged derived types and discriminants*.............................. ... 212
Access Types. 217
12.1 Generalaccess types 217
12.2 Access-to-subprogram types 219
12.3 Null eXclUSIONS . ..ottt e 221
124 Accessibilityrules 223
12.5 Anonymous access types™ i 225
12.6 Access parameters 226
12.7 Access discriminants® ittt e 230
12.8 Storage pools® 232
12.9 Controlled types* i 232
12.10 Mutually dependent types*......... i 236
Numeric Types. 245
13.1 Basic CONCEPLS . ..ottt 245
13.2 Signedintegertypes 248
13.3 Types versus subtypes 249
134 Modular types.ouii e 250
135 Real typesot 253
13.6 Floating point types. 254
13.7 Ordinary fixed pointtypes i i i 257
13.8 Decimal fixed point types®.o i 258
13.9 Fixed point multiplication and division* oL 262
13.10 Complex NnUMDbETs®o 263
13.11 Advanced concepts™ 267
Input-Output 277
14.1 Libraries for input—output............. i 277
14.2 Interface with the operation system 279
14,3 SHreaMIS™ .. ot 279
14.4 Generic dispatching constructors®......... il 283
Program Structure........... 287
15.1 Compilation and executiono i 287
15.2 Compilation and the environment of compilation*........................... 288
15.3 SUDUNIES® ..o 289

154 Pragmasoiuiini 292

Contents xiii

16

17

18

19

15.5 Elaboration™......... 292
156 Renamings ... 295
15.7 Usetypeclauset 297
15.8 Visibility rules* 298
159 Overloading. 301
Containers 307
16.1 Conceptso 308
16.2 VectOrs. ... 312
16.3 Doubly-linked lists. i 313
164 Maps ... 314
16,5 SelS .ot 317
16.6 Indefinite containers i i 318
Interfaces and Multiple Inheritance oL 323
171 Interfacest 324
17.2 Case study: displayableevents..................o 326
17.3 Case study: storable interface® i i 329
17.4 Synchronized interfaces i 336
17.5 Generic formal tagged private types* oo 339
17.6 Generic formal derived types* L 341
CONCUITENCYottt e e e i e e 345
18.1 Tasks and protected objects 346
182 Rendezvous ...t 352
18.3 Implementationof entrycalls.............. ... i 357
18.4 Case study: synchronization with rendezvous and protected objects 358
18.5 Entry families 363
18.6 Protected subprograms................o i i 364
18.7 Therequeue statement i 364
18.8 Additional rules for protected types® 367
Concurrency (Continued) i 375
19.1 Activation and termination o 375
19.2 EXCEPLIONSvvttii i 379
193 TIMe . ..o 380
19.4 Time formatting and time zones*.......... i 382
19.5 Representation of Time and Duration*....................., 383
19.6 Timed and conditional entry calls* 384
19.7 Asynchronous transfer of control*......... il 387
19.8 Alternatives for selective accept........... i il 389
19.9 Case study: concurrent simulation 389

19.10 Tasks as access discriminants®ttt 393

xiv Contents
20 Systems Programming 401
20.1 Implementation dependences. 401
20.2 Representationitems............o 402
20.3 Interfaces to other languagesl 404
20.4 Annex C Systems Programming i, 409
20.5 Machine code®. i 410
20.6 Interrupts® 411
20.7 Shared variables® 413
20.8 Task identification and attributes®.............. oL 414
20.9 Detecting task termination®.......... ol 417
21 Real-Time Systemsot 423
21.1 Annex D Real-Time Systems i, 423
21.2 Scheduling and priorities............ 423
21.3 Task dispatching policies i 425
21.4 Base and active priorities i 428
21.5 Entry queuing policies 430
21.6 Dynamic priorities® 431
21.7 Priority ceiling locking 431
21.8 Monotonictime. 433
21.9 Execution time™. 435
21.10 Preemptive abort* 437
21.11 Synchronous task control* 438
21.12 Asynchronous task control* i 438
21.13 Tasking restrictionst 438
21.14 The Ravenscar profile i 439
22 Distributed and High Integrity Systemso 451
22.1 Distributed systems........... ... 451
222 Highintegrity systems i i 456
A Glossary of ARM Termsttt 459
B Hints ... 477
€ ANSWIS . .ottt 479
References i 487
Index of ARM Sections i i 489

SubjectIndex 495

