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Preface

Albert Einstein once said everything should be made as simple as possible, but not simpler.
Einstein could have been talking about programming languages, as the landscape is strewn
with “simple” languages that, several versions later, have 500-page reference manuals!

The truth is that we expect a lot of our programming languages. We demand support for en-
capsulation and abstraction, type checking and exception handling, polymorphism and more.
Ada, unlike other languages which grew by the gradual addition of features, was designed
as a coherent programming language for complex software systems. Ada for Software Engineers
(ASE) is written to equip you with the knowledge necessary to use the Ada programming lan-
guage to develop software systems.

Although Ada never achieved the popularity of Java and the C-something languages, it
remains the programming language of choice for reliable software. Every time you step on an
airplane or a fast train, you are quite literally trusting your life to software written in Ada.
Given the low level of reliability of much of the software we use daily, I can only regret that the
use of Ada is not more widespread, and I hope that this book will encourage more software
engineers to give Ada a chance.

Intended audience

The book is intended for software engineers making the transition to Ada, and for upper-level
undergraduate and graduate students, including those who have had the good fortune to study
Ada as their first programming language. No specific knowledge of Ada is assumed; the pre-
requisites are a basic knowledge of computer science and computer systems, and at least two
years of programming experience. As the title implies, if you are a software engineer or training
to become one, this book is for you.
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Structure of the book

The complexity of modern programming languages leaves textbook writers with a painful
dilemma: either gloss over the gory details, or write books that are heavy enough to be classi-
fied as lethal weapons. Is there another way? A concise description of Ada is freely available:
the Ada Reference Manual (ARM) [7], which is the document defining the language standard.
The ARM has a reputation for being ponderous reading meant for “language lawyers.” Never-
theless, I believe that—with a bit of guidance—software engineers can learn to read most of the
ARM. ASE is based upon two premises: (a) it is best to learn the individual language constructs
within the context of actual programs, and (b) if the learning is based upon the terminology
and concepts used in the language standard, you will be able to use the ARM as your primary
reference manual.

The Ada language will be taught using a few relatively large case studies, rather than a
large number of small examples each crafted to demonstrate a particular construct or rule. Ex-
perienced programmers know that the key to mastering a programming language is not to
memorize the syntax and semantics of individual constructs, but to learn how to integrate the
constructs into language-specific paradigms. We will need to gloss over details when explain-
ing a case study; rest assured that everything will eventually be explained. Certain sections are
marked with an asterisk and can be omitted during your initial study of Ada. This material is
not necessarily more difficult, but you can’t learn everything at once, and these are topics that
can be left for your second reading of the book.

The chapters in the book can be divided into five parts and three appendices. The first two
parts contain the core concepts of Ada and should probably be read first and in sequence (skip-
ping the starred sections, of course). The others chapters can be read as necessary.

1. After an introductory chapter, Chapters 2-5 quickly cover elementary language constructs
such as statements, subprograms, arrays, records and pointers that should be familiar from
your previous programming experience.

2. The second part is based upon the progressive development of a case study demonstrating
the Ada constructs for programming-in-the-large (including object-oriented programming):
packages and private types (Chapter 6), type extension, inheritance, class-wide types and
dynamic polymorphism (Chapter 7-8), and generics (Chapter 9).

3. Chapters 10-14 cover other topics and are more or less independent of the previous ones:
exceptions, the type system in depth, access types (pointers), numerics and input-output.

4. The fourth part contains material on program structure (Chapter 15), the container library
(Chapter 16), and interfaces (Chapter 17).

5. Chapters 18-22 include topics broadly covered by the term systems programming: multitask-
ing, hardware interfaces, and real-time and distributed systems.

A special feature of the book is the comprehensive Glossary (Appendix A), which explains
the ARM terminology with examples. In addition, discussions in the text always contain ref-
erences to the relevant paragraphs in the ARM. The Index of ARM Sections will be invaluable
when you begin to use the ARM as a reference manual.
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At the end of each chapter are Projects and Quizzes. Projects are non-trivial programming
exercises, many of which ask you to extend the case studies in the text. Quizzes are not routine
exercises as the term is usually used; they are intended help you understand the finer points
of the Ada language, and can be skipped until you have significant experience programming
with Ada. Each quiz is a small Ada program; you are to examine it and decide what will hap-
pen when the program is compiled, and—if the program contains executable statements and
compiles successfully—the result of the execution. Appendix B Hints refers you to the rele-
vant clauses of the ARM from which you should be able to find the answers to the quizzes
before looking at Appendix C Answers. (To save space, with and use clauses for Ada.Text_IO,
Ada.Integer_IO and Ada.Exceptions are omitted.)

Supplementary material and links

All the case studies, quizzes and programs in the book were compiled and executed. The full
source code is available in the software archive at:

* http://www.springer.com/978-1-84882-313-6.

The programs were developed using the GNAT compiler for Ada 2005. It is available in com-
mercial, academic and free versions; see:

e https://libre.adacore.com.
There are two comprehensive websites on Ada:

* ACM Special Interest Group on Ada (SIGAda), http://www.sigada.org,
¢ Ada Resource Association (ARA), http://www.adaic.com.

From these websites you can download documents such as the ARM, and find links to compiler
vendors, support software, relevant conferences, and other resources.

Ada 2005

This book was original written for the Ada 95 version of the language. That edition is out of
print and I have used the occasion of the publication of a new version of Ada, Ada 2005, to
expand and improve the book. Constructs of Ada 2005 are freely used, but sections that use
them are annotated to indicate which constructs are new. The software archive for the previous
edition of the book will remain freely available.
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