
Chapter 1

3D Face Recognition

Berk Gökberk, Albert Ali Salah, Neşe Alyüz, Lale Akarun

1.1 Introduction

Face is the natural assertion of identity: We show our face as proof of who we
are. Due to this widely accepted cultural convention, face is the most widely
accepted biometric modality.

Face recognition has been a specialty of human vision: Something humans
are so good at that even a days-old baby can track and recognize faces.
Computer vision has long strived to imitate the success of human vision and in
most cases, has come nowhere near its performance. However, the recent Face
Recognition Vendor Test (FRVT06), has shown that automatic algorithms
have caught up with the performance of humans in face recognition [73].

How has this increase in performance come about? This can partly be
attributed to the advances in 3D face recognition in the last decade. 3D face
recognition has important advantages over 2D; it makes use of shape and
texture channels simultaneously, where the texture channel carries 2D image
information. However, it is registered with the shape channel, and intensity
can now be associated with shape attributes such as the surface normal.
The shape channel does not suffer from certain problems that the texture
suffers from such as poor illumination, or pose changes. Recent research in 3D
face recognition has shown that shape carries significant information about
identity. At the same time, the shape information makes it easier to eliminate
the effects of illumination and pose from the texture. Processed together, the
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shape and the texture make it possible to achieve high performances under
different illumination and pose conditions.

Although 3D offers additional information that can be exploited to infer
the identity of the subject, this is still not a trivial task: External factors
such as illumination and camera pose have been cited as complicating fac-
tors. However, there are internal factors as well: Faces are highly deformable
objects, changing shape and appearance with speech and expressions. Hu-
mans use the mouth and the vocal tract to produce speech; and the whole
set of facial muscles to produce facial expressions. Human vision can deal
with face recognition under these conditions. Automatic systems are still
trying to devise strategies to tackle expressions. A third dimension compli-
cating face recognition is the time dimension. Human faces change primarily
due to two factors. The first factor is ageing: All humans naturally age. This
happens very fast at childhood, somewhat slower once adulthood is reached.
The other factor is intentional: Humans try to change the appearance of their
faces through hair style, make-up and accessories. Although the intention is
usually to enhance the beauty of the individual, the detrimental effects for
automatic face recognition are obvious.

This chapter will discuss advances in 3D face recognition together with
open challenges and ongoing research to overcome these. In Section 2, we
discuss real-world scenarios and acquisition technologies. In Section 3, we
overview and compare 3D face recognition algorithms. In Section 4, we outline
outstanding challenges and present a case study from our own work; and in
chapter 5, we present conclusions and suggestions for research directions. A
number of questions touching on the important points of the chapter can be
found at the end.

1.2 Technology and Applications

1.2.1 Acquisition Technology

Among biometric alternatives, facial images offer a good trade-off between ac-
ceptability and reliability. Even though iris and fingerprint biometrics provide
accurate authentication, and are more established as biometric technologies,
the acceptibility of face as a biometric makes it more convenient. 3D face
recognition aims at bolstering the accuracy of the face modality, thereby
creating a reliable and non-intrusive biometric.

There exist a wide range of 3D acquisition technologies, with different
cost and operation characteristics. The most cost-effective solution is to use
several calibrated 2D cameras to acquire images simultaneously, and to re-
construct a 3D surface. This method is called stereo acquisition, even though
the number of cameras can be more than two. An advantage of these type
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of systems is that the acquisition is fast, and the distance to the cameras
can be adjusted via calibration settings, but these systems require good and
constant illumination conditions.

The reconstruction process for stereo acquisition can be made easier by
projecting a structured light pattern on the facial surface during acquisition.
The structured light methods can work with a single camera, but require
a projection apparatus. This usually entails a larger cost when compared
to stereo systems, but a higher scan accuracy. The potential drawbacks of
structured light systems is their sensitivity to external lighting conditions
and the requirement of a specific acquisition distance for which the system
is calibrated. Another problem associated with structured light is that the
projected light interferes with the color image, and needs to be turned off to
generate it. Some sensors avoid this problem by using near infrared structured
light.

Yet a third category of scanners relies on active sensing: A laser beam
reflected from the surface indicates the distance, producing a range image.
These types of laser sensors, used in combination with a high resolution color
camera, give high accuracies, but sensing takes time.

The typical acquisition distance for 3D scanners varies between 50 cm and
150 cm, and laser scanners are usually able to work with longer distances (up
to 250 cm) when compared to stereo and structured light systems. Structured
light and laser scanners require the subject to be motionless for a short du-
ration (0.8 to 2.5 seconds in the currently available systems), and the effect
of motion artifacts can be much more detrimental for 3D in comparison to
2D. Laser scanners are able to provide 20-100µm accuracy in the acquired
points. The presence of strong motion artifacts would make a strong smooth-
ing necessary, which will dispel the benefits of having such a great accuracy.
Simultaneous acquisition of a 2D image is an asset, as it enables fusion of 2D
and 3D methods to potentially greater accuracy. The amount of collected data
affects scan times, but also the time of transfer to the host computer, which
can be significant. For instance a Minolta 910 scanner requires 0.3 seconds to
scan the target in the fast mode (about 76K points), and about 1 second to
transfer it to the computer. Longer scan times also result in motion-related
problems, including poor 2D-3D correspondence. Table 1.1 lists properties of
some commercial sensors.
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1.2.2 Application Scenarios

Scenario 1 - Border Control: Since 3D sensing technology is relatively
costly, its primary application is the high-security, high-accuracy authenti-
cation setting, for instance the control point of an airport. In this scenario,
the individual briefly stops in front of the scanner for acquisition. The full
face scan can contain between 5.000 to 100.000 3D points, depending on the
scanner technology. This data is processed to produce a biometric template,
of the desired size for the given application. Template security considerations
and the storage of the biometric templates are important issues. Biomet-
ric databases tend to grow as they are used; the FBI fingerprint database
contains about 55 million templates.

In verification applications, the storage problem is not so vital since tem-
plates are stored in the cards such as e-passports. In verification, the biomet-
ric is used to verify that the scanned person is the person who supplied the
biometric in the e-passport, but extra measures are necessary to ensure that
the e-passport is not tampered with. With powerful hardware, it is possible
to include a screening application to this setting, where the acquired image
is compared to a small set of individuals. However, for a recognition setting
where the individual is searched among a large set of templates, biometric
templates should be compact.

Another challenge for civil ID applications that assume enrollment of the
whole population is the deployment of biometric acquisition facilities, which
can be very costly if the sensors are expensive. This cost is even greater if
multiple biometrics are to be collected and used in conjunction.

Scenario 2 - Access Control: Another application scenario is the con-
trol of a building, or an office, with a manageable size of registered (and
authorized) users. Depending on the technology, a few thousand users can be
managed, and many commercial systems are scalable in terms of users with
appropriate increase in hardware cost. In this scenario, the 3D face technology
can be combined with RFID to have the template stored on a card together
with the unique RFID tag. Here, the biometric is used to authenticate the
card holder given his/her unique tag.

Scenario 3 - Criminal ID: In this scenario, face scans are acquired
from registered criminals by a government-sanctioned entity, and suspects are
searched in a database or in videos coming from surveillance cameras. This
scenario would benefit most from advances in 2D-3D conversion methods. If
2D images can be reliably used to generate 3D models, the gallery can be
enhanced with 3D models created from 2D images of criminals, and acquired
2D images from potential criminals can be used to initiate search in the
gallery.

Scenario 4 - Identification at a Distance: For scenarios 1 to 3, avail-
able commercial systems can be employed. A more challenging scenario is
identification at a distance, when the subject is sensed in an arbitrary situ-
ation. In this scenario, people can be far away from the camera, unaware of
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the sensors. In such cases, challenge stems from these types of un-cooperative
users. Assuming that the template of the subject is acquired with a neutral
expression, it is straightforward for a person who tries to avoid being detected
to change parts of his or her facial surface by a smiling or open-mouthed ex-
pression. Similarly, growing a moustache or a beard, or wearing glasses can
make the job of identifying the person difficult. A potential solution to this
problem is to use only the rigid parts of the face, most notably the nose
area, for recognition. However, restricting the input data to such a small
area means that a lot of useful information will be lost, and the overall ac-
curacy will decrease. Furthermore, certain facial expressions affect the nose
and subsequently cause a drop in the recognition accuracy.

This scenario also includes consumer identification, where a commercial
entity identifies a customer for personalized services. Since convenience is
of utmost importance in this case, face biometrics are preferable to most
alternatives.

Scenario 5 - Access to Consumer Applications: Finally, a host of po-
tential applications are related with appliances and technological tools that
can be proofed against theft with the help of biometrics. For this type of
scenario, the overall system cost and user convenience are more important
than recognition accuracy. Therefore, stereo camera based systems are more
suited for these types of applications. Computers, or even cell phones with
stereo cameras can be protected with this technology. Automatic identifica-
tion has additional benefits that can increase the usefulness of such systems.
For instance a driver authentication system using 3D facial characteristics
may provide customization for multiple users in addition to ensuring secu-
rity. Once the face acquisition and analysis tools are in place, this system
can also be employed for opportunistic purposes, for instance to determine
drowsiness of the driver by facial expression analysis.

1.3 3D Face Recognition Technology

A 3D face recognition system usually consists of the following stages: 1)
preprocessing of raw 3D facial data, 2) registration of faces, 3) feature ex-
traction, and 4) matching [2, 87, 19, 72, 30] Figure 1.1 illustrates the main
components of a typical 3D face recognition system. Prior to these steps, the
3D face should be localized in a given 3D image. However, currently available
3D face acquisition devices have a very limited sensing range and the acquired
image usually contains only the facial area. Under such circumstances, recog-
nition systems do not need face detection modules. With the availability of
more advanced 3D sensors that have large range of view, we foresee the de-
velopment of highly accurate face detection systems that use 3D facial shape
data together with the 2D texture information. For instance, in [25], a 3D face
detector that can localize the upper facial part under occlusions is proposed.
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The preprocessing stage usually involves simple but critical operations such
as surface smoothing, noise removal, and hole filling. Depending on the type
of the 3D sensor, the acquired facial data may contain significant amount of
local surface perturbations and/or spikes. If the sensor relies on reflected light
for 3D reconstruction, dark facial regions such as eyebrows and eye pupils do
not produce 3D data, whereas specular surfaces scatter the light: As a result,
these areas may contain holes. In addition, noise and spike removal algorithms
also produce holes. These holes should be filled at the preprocessing phase.

After obtaining noise-free facial regions, the most important phases in
the 3D face recognition pipeline are the registration and feature extraction
phases. Since human faces are similar to each other, accurate registration
is vital for extracting discriminative features. Face registration usually starts
with acceptable initial conditions. For this purpose, facial landmarks are usu-
ally used to pre-align faces. However, facial feature localization is not an easy
task under realistic conditions. Here, we survey methods that are proposed
for 3D landmarking, registration, feature extraction, and matching.

Fig. 1.1 Overall pipeline of a typical 3D face recognition system.

1.3.1 Automatic Landmarking

Robust localization of facial landmarks is an important step in 2D and 3D
face recognition. When guided by accurately located landmarks, it is possible
to coarsely register facial images, increasing the success of subsequent fine
registration.
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The most frequently used approach to facial landmark detection is to de-
vise a number of heuristics that seem to work for the experimental conditions
at hand [9, 16, 45, 53, 99, 101]. These can be simple rules, such as taking
the point closest to the camera as the tip of the nose [24, 102], or using con-
trast differences to detect eye regions [54, 102]. For a particular dataset, these
methods can produce very accurate results. However, for a new setting, these
methods are not always applicable. Another typical approach in landmark
localization is to detect the easiest landmark first, and to use it in constrain-
ing the location of the next landmark [9, 16, 24]. The problem with these
methods is that one erroneously located landmark makes the localization of
the next landmark more difficult, if not impossible.

The second popular approach avoids error accumulation by jointly opti-
mizing structural relationships between landmark locations and local feature
constraints [88, 98]. In [98], local features are modeled with Gabor jets, and
a template library (called the bunch) is exhaustively searched for the best
match at each feature location. A canonic graph serves as a template for
the inter-feature distances, and deviations from this template are penalized
by increases in internal energy. In [40], an attentive scheme is employed to
constrain the detailed search to smaller areas. A feature graph is generated
from the feature point candidates, and a simulated annealing scheme is used
to find the distortion relative to the canonic graph that results in the best
match. A large number of facial landmarks (typically 30-40) are used for these
methods and the optimization is difficult as the matching function exhibits
many local minima. Most of the landmarks used in this scenario do not have
sufficiently discriminating local features associated with them. For instance
landmarks along the face boundary produce very similar features.

The third approach is the adaptation of feature-based face detection algo-
rithms to the problem of landmarking [12, 29]. Originally, these methods are
aimed at finding a bounding box around the face. Their application to the
problem of exact facial landmarking calls for fine-tuning steps.

The problem is no less formidable in 3D, although the prominence of the
nose makes it a relatively easy candidate for fast, heuristic-based approaches.
If the symmetry axis can be found, it is relatively easy to find the eye and
mouth corners [45]. However, the search for the symmetry axis can be costly
without the guiding landmarks. Curvature-based features seem to be promis-
ing in 3D due to their invariance to several transformations [53, 24]. Es-
pecially, Gaussian and mean curvatures are frequently used to locate and
segment facial parts. For instance, in [5], multi-scale curvature features are
used to localize several salient points such as eye pits and nose. However,
curvature-based descriptors suffer from a number of problems. Reliable esti-
mation of curvature requires a strong pre-processing that eliminates surface
irregularities, especially near eye and mouth corners. Two problems are as-
sociated with this pre-processing: The computational cost is high, and the
smoothing destroys local feature information to a great extent, producing
many points with similar curvature values in each local neighbourhood. One
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issue that makes consistent landmarking difficult is that the anatomical land-
marks are defined in structural relations to each other, and the local feature
information is sometimes not sufficient to determine them correctly. For flat-
nosed persons, the “tip of the nose” is not a point, but a whole area of points
with similar curvature. More elaborate 3D methods, like spin images, are
very costly in practice [26].

It is possible to use 3D information in conjunction with 2D for landmark
localization [16, 24, 6]. Although the illumination sensitivity of the 2D fea-
tures will have a detrimental effect on the joint model, one can use features
that are relatively robust to changes in illumination. In [24], 2D Harris cor-
ners are used together with 3D shape indices. In some cases 3D is just used
to constrain the 2D search [16, 6]. Under consistent illumination conditions,
2D is richer in discriminative information, but 3D methods are found to be
more robust under changing illumination conditions [81].

In [81] and [82] statistical feature models are used to detect each facial
feature independently on 3D range images. The advantage of this method
is that no heuristics are used to tailor the detection to each landmark sep-
arately. A structural analysis subsystem is used between coarse and fine de-
tection. Separating structural analysis and local feature analysis avoids high
computational load and local minima issues faced by joint optimization ap-
proaches [83]. Fig. 1.2 shows the amount of statistical information available
in 2D and 3D face images for independent detection of different landmarks.

1.3.2 Automatic Registration

Registration of facial scans is guided by automatically detected landmarks,
and greatly influences the subsequent recognition. 3D face recognition re-
search is dominated by dense registration based methods, which establish
point-to-point correspondences between two given faces. For recognition
methods based on point cloud representation, this type of registration is the
standard procedure, but even range image-based methods benefit from this
type of registration.

Registration is potentially the most expensive phase of the 3D face recogni-
tion process. We distinguish between rigid and non-rigid registration, where
the former aligns facial scans by an affine transformation, and the latter ap-
plies deformations to align facial structures more closely. For any test scan,
registration needs to be performed only once for an authentication setting.
For the recognition setting, the two extreme approaches are registering the
query face to all the faces in the gallery, or to a single average face model
(AFM), which automatically establishes correspondence with all the gallery
faces, which have been registered with the AFM prior to storage. In be-
tween these extremes, a few category-specific AFMs (for instance one AFM
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(a) (b)

Fig. 1.2 The amount of statistical information available for independent detection of
different landmarks in (a) 2D face images and (b) 3D face images, respectively. Marker
sizes are proportional to localization accuracy (varies between 32-97 per cent). The 2D
images are assumed to be acquired under controlled illumination. The method given in [81]
is used on Bosphorus dataset [85].

for males, and one for females) can be beneficial to accuracy and still be
computationally feasible [82].

For rigid registration, the standard technique is the iterative closest point
(ICP) algorithm [11]. For registering shape S1 to a coarsely aligned shape
S2, the ICP procedure first finds the closest points in S2 for all the points on
S1, and computes the rotation and translation vectors that will minimize the
total distance between these corresponding points. The procedure is applied
iteratively, until a convergence criterion is met. Practical implementations
follow a coarse-to-fine approach, where a subset of points in S1 are used
initially. Once two shapes are put into dense correspondence with ICP, it is
straightforward to obtain the total distance of the shapes, as this is the value
minimized by ICP. This value can be employed for both authentication and
recognition purposes.

Previous work on ICP show that a good initialization is necessary for fast
convergence and an accurate end-result. In [82], four approaches for coarse
alignment to an AFM are contrasted:
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1. Assume that the point with the greatest depth value is the tip of the
nose, and find the translation to align it to the nose tip of the AFM. This
heuristic is used in [24].

2. Use the manually annotated nose tip.
3. Use seven automatically located landmarks on the face (eye corners, nose

tip, mouth corners), and use Procrustes analysis to align them to the
AFM. Procrustes analysis finds a least squares alignment between two
sets of landmark points, and can also be used to generate a mean shape
from multiple sets of landmarks [39].

4. Use seven manually annotated landmarks with Procrustes analysis.

On the FRGC benchmark dataset, it was shown that the nose tip heuristic
performed the worst (resulting in 82.85 per cent rank 1 recognition rate), fol-
lowed by automatically located landmarks with Procrustes alignment (87.86
per cent), manually annotated nose tip (90.60 per cent) and manually an-
notated landmarks with Procrustes alignment (92.11 per cent) [82]. These
results also confirmed that the nose tip is the most important landmark for
3D face registration.

Non-rigid registration techniques have been used for registration as well as
for synthesis applications. Blanz and Vetter [15] have used deformable models
to register faces to a 3D model which can then be used to synthesize faces
with a specific expression and pose; which are subsequently used for recog-
nition. A common feature of deformable algorithms is that they employ a
common model to which all faces are registered to: This common face model,
conveniently serves as an annotated face model (AFM), and serves to estab-
lish dense correspondence and method for annotating all faces. It has been
shown that the construction of the AFM is critical for the success of the reg-
istration [82]. Many of the techniques for deformable registration employ the
thin plate spline algorithm [17] to deform the surface so that a set of land-
mark points are brought in correspondence [44]. Most non-rigid registration
techniques in the literature (such as [45, 44, 57, 91]) are derived from the work
of Bookstein on thin-plate spline (TPS) models [18]. This method simulates
the bending of a thin metal plate that is fixed by several anchor points. For a
set of such points Pi = (xi, yi), i = 1 . . . n, the TPS interpolation is a vector-
valued function f(x, y) = [fx(x, y), fy(x, y)] that maps the anchor points to
their specified homologues P ′i = (x′i, y

′
i), i = 1 . . . n, and specifies a surface

which has the least possible bending, as measured by an integral bending
norm. The mapping for the anchor points (i.e. specified landmarks on the fa-
cial surface) is exact, whereas the rest of the points are smoothly interpolated.
This type of registration strongly depends on the number and accuracy of
landmarks. If the landmark set is large, all surfaces will eventually resemble
the AFM and lose their individuality. To avoid this problem, Mao et al. [57]
deform the AFM rather than the individual facial surfaces. Tena et al. [91]
optimize this algorithm with the help of facial symmetry and multiresolu-
tion analysis. A compromise between individuality and surface conformance
is achieved through the minimization of an energy function combining inter-
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nal and external forces [49]. The success of the fitting is highly dependent
upon the initial pose alignment, the construction of the AFM, and the mesh
optimization. Kakadiaris et. al [48] use an anthropomorphically correct AFM
and optimize all steps very carefully and obtain very good performance.

1.3.3 Feature Extraction and Matching

The feature extraction technique essentially depends upon the previous step:
the registration. As explained in the previous section, most registration ap-
proaches register facial surfaces onto a common model (the AFM), which
serves to facilitate dense correspondence between facial points. The one-to-all
ICP technique fails to do that: Surface pairs are registered to each other rather
than to a common model. Therefore, the ICP error, which serves as a measure
of how well the surfaces match serves as the feature extraction and matching
technique. Many early systems for 3DFR use this convention [19], [60], [8].
Some representation techniques such as the point signatures [23, 95], spin
images [96], or histogram based approaches [100] are special in that they
do not require prior registration. In the rest of this subsection, we will as-
sume that the surfaces are densely registered and a dense one-to-one mapping
exists between facial surfaces.

The point cloud feature, which is simply the set of 3D coordinates of
surface points of densely registered faces, is the simplest feature one can use,
and the point cloud and point set difference, used directly as a feature, is
analogous to the ICP error. PCA has been applied to the point cloud feature
by [79, 70].

Geometrical features rely on differences between facial landmark points
located on the facial surfaces [77, 52]. Authors have used as few as 19 [71] or as
many as 73 [33] landmark points. Riccio and Dugelay [78] use 3D geometrical
invariants derived from MPEG4 feature points.

Facial surfaces are often called 2.5D data since there exists only one z value
for a given (x,y) pair. Therefore, a unique projection along the z axis, pro-
vides a unique depth image, sometimes called a range image, which can then
be used to extract features. Common feature extraction techniques are sub-
space projection techniques such as PCA, LDA, ICA, DFT, DCT, or NMF
[31]. Many researchers have applied these standard techniques [22, 42, 38], as
well as propose other techniques such as optimal component analysis [105] or
Discriminant Common vectors [105]. Other 2D face feature extraction tech-
niques are also applicable [80, 28]. Most of the statistical feature extraction
based methods treat faces globally. However, it is sometimes beneficial to per-
form local analysis, especially under adverse situations. For instance, in [32],
authors perform local region-based DCT analysis on the depth images, and
construct final biometric templates by concatenating local DCT features.
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Similarly, DCT features derived from overlapping local windows placed over
the upper facial region is employed in [59]

While depth images rely on a projection to obtain an image from a surface,
one can intersect the surface with planes to generate a set of curves [13,
104]. 1D curve representation techniques can then be applied to represent
the curves.

Curvature-based surface descriptors are among the most successful 3D sur-
face representations. They have been used for facial surface segmentation [66]
as well as representation [90]. Commonly used descriptors are maximum
and minimum principal directions [90], and normal maps [3, 4]. Kakadiris
et al. [47] have fused Haar and pyramid features of normal maps. Gokberk
et al. [38] have used shape indices, principal directions, mean and Gaussian
curvatures and have concluded that principal directions perform the best.

The combination of different representations has also attracted widespread
interest. Some approaches use feature level fusion: A typical example is given
in [69], where shape and texture information is merged at the point cloud
level thus producing 4D point features. Wang and Chua [94] select 2D Gabor
wavelet features as local descriptors for the texture modality, and use point
signatures as local 3D shape descriptors, and use score level fusion using
weighted sum rule. Osaimi et al. [7] fuse local and global fields in a histogram.

Score fusion is more commonly used to combine shape and texture infor-
mation. Tsalakanidou et al. [93, 92] propose a classic approach where shape
and texture images are coded using PCA and their scores are fused at the
decision level. Malassiotis and Strintzis [56] use an embedded hidden Markov
model- based (EHMM) classifier which produces similarity scores and these
scores are fused by a weighted sum rule. Chang et al. [22] use PCA- based
matchers for shape (depth image) and texture modalities. The outputs of
these matchers are fused by a weighted sum rule. BenAbdelkader and Grif-
fin [10] concatenate depth image pixels with texture image pixels for data
level fusion. Linear discriminant analysis (LDA) is then applied to the con-
catenated feature vectors to extract features.

A two-level sequential combination idea was used in [55] for 2D texture
images, where the ICP-based surface matcher eliminates the unlikely classes
at the first round, and at the second round, LDA analysis is performed on
the texture information to finalize the identification at the second round.

To deal with degradation in the recognition performance due to facial
expressions, part-based classification approaches are considered, where the
similarity scores from individual classifiers are fused for the final classification.

In [51], the sign of mean and Gaussian curvatures are calculated at each
point for a range image, and these values are used to segment a face into
convex regions. EGIs corresponding to each region are created and for the
regional classification correlation between the EGIs is utilized. In [64], Moreno
et al. segment the 3D facial surface using mean and Gaussian curvatures and
extract various descriptors for each segment. Cook et al. [27] use Log-Gabor



14 Berk Gökberk, Albert Ali Salah, Neşe Alyüz, Lale Akarun

Templates (LGT) on range images and divide a range image into 147 regions.
Classification is handled by fusing the scores of each individual classifier.

In [21], Chang et al. use multiple overlapping regions around the nose area.
Individual regional surfaces are registered with ICP and the regional simi-
larity measures are fused with sum, min or product rule. In [34], Faltemier
et al. extend the use of multiple regions of [21] and utilize seven overlap-
ping nose regions. ICP is used for individual alignment of facial segments.
Threshold values determined for regions are utilized in committee voting fu-
sion approach. In [35], the work of Faltemier et al. is expanded to utilize
38 regions segmented from the whole facial surface. The regional classifiers
based on ICP alignment are fused with the modified borda count method.

In [47], a deformable facial model is used to describe a facial surface. The
face model is segmented into regions and after the alignment, 3D geometry
images and normal maps are constructed for regions of test images. The re-
gional representations are analyzed with a wavelet transform and individual
classifiers are fused with a weighted sum rule. Deformation information can
also be used as a face descriptor. Instead of allowing deformations for better
registration, that deformation field may uniquely represent a person. Zou et
al.[107] follows this approach by selecting several prototype faces from the
gallery set, and then learns the warping space from the training set. A given
probe face is then warped to a generic face template where the warping pa-
rameters found at this stage are linear combinations of the previously learned
warpings.

Deformation invariance can also be accomplished with the use of geodesic
distances [20, 67]. It has been shown that the geodesic distance between two
points over the facial surface does not change significantly when facial sur-
face deforms slightly [20]. In [67], facial surface is represented using geodesic
polar parametrization to cope with facial deformations. When a face is repre-
sented by geodesic polar coordinates, intrinsic properties are preserved and a
deformation invariant representation is obtained. Using this representation,
the face is assumed to contain 2D information embedded in 3D space. For
recognition, 2D PCA classifiers in color and shape space are fused.

Mian et al. [62] extract inflection points around the nose tip and uti-
lize these points for segmenting the face into eye-forehead and nose regions.
The regions, that are less affected under expression variations, are separately
matched with ICP and the similarity scores are fused at the metric level.
In order to handle the time complexity problem of matching a probe face
to every gallery face, authors propose a rejection classifier that eliminates
unlikely classes prior to region-based ICP matching algorithm. The rejection
classifier consists of two matchers: the first one uses spherical histogram of
point cloud data for the 3D modality (spherical face representation, SFR)
and the second one employs Scale-Invariant Feature Transform-based (SIFT)
2D texture features. By fusing each matchers similarity scores, the rejection
classifier is able to eliminate 97% of the gallery faces which drastically speeds
up the ICP-based matching complexity at the second phase.
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1.3.3.1 Evaluation Campaigns for 3D Face Recognition

We have seen that there are many alternatives at each stage of a a 3D face
recognition system: The resulting combinations present abundant possibili-
ties. Many 3D face recognition systems have been proposed over the years
and performance has gradually increased to rival the performance of 2D face
recognition techniques. Table 1.2 lists commonly used 3D face databases to-
gether with some statistics such as the number of subjects and the total
number of 3D scans present in the databases. In the presence of literally hun-
dreds of alternative systems, independent benchmarks are needed to evaluate
alternative algorithms and to assess the viability of 3D face against other
biometric modalities such as high-resolution 2D Faces, fingerprints and iris
scans. Face Recognition Grand Challenge (FRGC) [76] and Face Recognition
Vendor Test 2006 (FRVT’06) [73] are the two important evaluations where
the 3D face modality is present.



16 Berk Gökberk, Albert Ali Salah, Neşe Alyüz, Lale Akarun

T
a
b
le

1
.2

L
is

t
o
f
p
o
p
u
la

r
3
D

fa
ce

d
a
ta

b
a
se

s.
S
u
b
j.
:
su

b
je

ct
co

u
n
t,

S
a
m

p
.:

n
u
m

b
er

o
f
sa

m
p
le

s
p
er

su
b
je

ct
,
T
o
t.

:
to

ta
l
n
u
m

b
er

o
f
sc

a
n
s.

T
h
e

U
N

D
d
a
ta

b
a
se

is
a

su
b
se

t
o
f
th

e
F
R

G
C

v
.2

.
P
o
se

la
b
el

s:
L
:
le

ft
,
R

:r
ig

h
t,

U
:
U

p
,
a
n
d

D
:
D

o
w

n
.

D
a
ta

b
a
se

S
u
b
je

ct
C

o
u
n
t

S
a
m

p
le

C
o
u
n
t

T
o
ta

l
S
ca

n
s

E
x
p
re

ss
io

n
s

P
o
se

N
D

2
0
0
6

[3
6
]

8
8
8

1
-6

3
1
3
4
5
0

N
eu

tr
a
l,

h
a
p
p
in

es
s,

sa
d
n
es

s,
su

rp
ri

se
,
d
is

g
u
st

,
o
th

er
-

Y
o
rk

[4
1
]

3
5
0

1
5

5
2
5
0

H
a
p
p
y,

a
n
g
ry

,
ey

es
cl

o
se

d
,
ey

eb
ro

w
s

ra
is

ed
U

,D

F
R

G
C

v
.2

[7
4
]

4
6
6

1
-2

2
4
0
0
7

A
n
g
ry

,
h
a
p
p
y,

sa
d
,
su

rp
ri

se
d
,
d
is

g
u
st

ed
,
a
n
d

p
u
ff
y

-

B
U

-3
D

F
E

[1
0
3
]

1
0
0

2
5

2
5
0
0

H
a
p
p
in

es
s,

d
is

g
u
st

,
fe

a
r,

a
n
g
ry

,
su

rp
ri

se
,
sa

d
n
es

s
(4

le
v
el

s)
-

C
A

S
IA

[1
0
6
]

1
2
3

1
5

1
8
4
5

S
m

il
e,

la
u
g
h
,
a
n
g
er

,
su

rp
ri

se
a
n
d

cl
o
se

d
ey

es
-

U
N

D
[6

8
]

2
7
5

1
-8

9
4
3

S
m

il
e

-

3
D

R
M

A
[1

4
]

1
2
0

6
7
2
0

-
L
,R

,U
,D

G
a
v
a
b
D

B
[6

5
]

6
1

9
5
4
9

S
m

il
e,

fr
o
n
ta

l
la

u
g
h
,
fr

o
n
ta

l
ra

n
d
o
m

g
es

tu
re

L
,R

,U
,D

B
o
sp

h
o
ru

s
[8

6
,
8
5
]

8
1

3
1
-5

3
3
3
9
6

3
4

ex
p
re

ss
io

n
s

(2
8

d
iff

er
en

t
a
ct

io
n

u
n
it

s,
6

em
o
ti

o
n
a
l

ex
-

p
re

ss
io

n
s:

h
a
p
p
in

es
s,

su
rp

ri
se

,
fe

a
r,

sa
d
n
es

s,
a
n
g
er

,
d
is

g
u
st

1
3

p
o
se

s

B
J
U

T
-3

D
[1

]
5
0
0

1
5
0
0

-
-

E
x
te

n
d
ed

M
2
V

T
S

D
a
ta

b
a
se

[6
1
]
2
9
5

4
1
1
8
0

-
-

M
IT

-C
B

C
L

[9
7
]

1
0

3
2
4

3
2
4
0

-
P
o
se

v
a
ri

a
-

ti
o
n
s

A
S
U

[8
9
]

1
1
7

5
-1

0
4
2
1

S
m

il
e,

a
n
g
er

,
su

rp
ri

se
-



1 3D Face Recognition 17

Face Recognition Grand Challenge: FRGC is the first evaluation
campaign that focuses expressly on face: 2D Face at different resolutions
and illumination conditions and 3D face, alone or in combination with 2D
[76, 75]. The FRGC data corpus contains 50,000 images where the 3D part
is divided into two sets: Development (943 images) and Evaluation set (4007
images collected from 466 subjects). The evaluation set is composed of target
and query images. Face images in the target set are to be used for enroll-
ment, whereas face images in the query set represent the test images. Faces
were acquired under controlled illumination conditions using a Minolta Vivid
900/910 sensor, a structured light sensor with a range resolution of 640×480
and a registered color image.

FRGC has three sets of 3D verification experiments: shape and texture
together (Experiment 3), shape only (Experiment 3s), and texture only (Ex-
periment 3t). The baseline algorithm for the 3D shape+texture experiment
uses PCA applied to the shape and texture channels separately, the scores
of which are fused to obtain the final scores. At the FAR rate of 0.1%, ver-
ification rate of the baseline system is found to be 54%. The best reported
performance is 97% at FAR rate of 0.1% [76, 75]. Table 1.3 Summarizes the
results of several published papers in the literature for a FAR rate of 0.001%
using FRGC v.2 database. The FRGC 3D experiments have shown that the
individual performance of the texture channel is better than the shape chan-
nel. However, fusing shape and texture channels together always results in
better performance. Comparing 2D and 3D, high-resolution 2D images ob-
tain slightly better verification rates than the 3D modality. However, at low
resolution and extreme illumination conditions, 3D has a definite advantage.

Table 1.3 Verification rates in % of various algorithms at FAR rate of 0.001% on the
FRGC v.2 dataset

Neutral vs All Neutral vs Neutral Neutral vs Non-neutral

System 3D 3D+2D 3D 3D+2D 3D 3D+2D

Mian et al. [63] 98.5 99.3 99.4 99.7 97.0 98.3
Kakadiaris et al. [46] 95.2 97.3 NA 99.0 NA 95.6
Husken et al. [43] 89.5 97.3 NA NA NA NA
Maurer et al. [58] 86.5 95.8 97.8 99.2 NA NA
FRGC baseline 45.0 54.0 NA 82.0 40.0 43.0

Face Recognition Vendor Test 2006: The FRVT 2006 is an indepen-
dent large-scale evaluation campaign that aims to look at performance of
high resolution 2D and 3D modalities [73] together with other modalities.
The competition was open to academia and companies. The objectives of
the FRVT 2006 tests were to compare face recognition performance to that
of top-performing modalities. Another objective was to compare the perfor-
mance to that of face recognition by humans.
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Submitted algorithms were tested on sequestered data collected from 330
subjects (3,589 3D scans). The participants of the 3D part were Cognitec,
Viisage, Tsinghua University, Geometrics and University of Houston. The
best performers for 3D have a FRR interquartile range of 0.005 to 0.015 at a
FAR of 0.001 for the Viisage normalization algorithm and a FRR interquartile
range of 0.016 to 0.031 at a FAR of 0.001 for the Viisage 3D one-to-one
algorithm. In FRVT 2006, it has been concluded that 1) 2D, 3D and iris
biometrics are all comparable in terms of verification rates, 2) there is a a
decrease in the error rate by at least an order of magnitude over what was
observed in the FRVT 2002. This decrease in error rate was achieved by
still and by 3D face recognition algorithms, 3)At low false alarm rates for
humans, automatic face recognition algorithms were comparable or better
than humans in recognizing faces under different illumination conditions.

1.4 Challenges and A Case Study

1.4.1 Challenges

The scientific work of the last 20 years on 3D face recognition, the large eval-
uation campaigns organized, and the abundance of products available on the
market all suggest that 3D face recognition is becoming available as a viable
biometric identification technology. However, there are many technical chal-
lenges to be solved for 3D face recognition to be used widely in all application
scenarios mentioned in the beginning of the chapter. The limitations can be
grouped as follows:

Restrictions due to scanners: The first important restriction is cost:
Reliable 3D face recognition still requires a high-cost, high-precision scanner;
and that restricts its use to only very limited applications. A second limitation
is the acquisition environment: current scanners require the object to stand
at a fixed distance away; with controlled pose. Furthermore, most scanners
require that the subject be motionless for a short time; since acquisition
usually takes some time. As scanners get faster, not only will this requirement
be relaxed, but other modes, such as 3D video will become available.

Restrictions due to algorithms: Most studies have been conducted on
datasets acquired in controlled environments, with controlled poses and ex-
pressions. Some datasets have incorporated illumination variances; and some
have incorporated varying expressions. However, there is no database with
joint pose, expression, and illumination differences and no studies on robust
algorithms to withstand all these variations. There is almost no work on
occlusions caused by glasses and hair; and surface irregularities caused by
facial hair. In order for ubiquitous 3D face recognition scenarios to work, the
recognition system should incorporate:
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• 3D face detection in a cluttered environment
• 3D landmark detection and pose correction
• 3D face recognition under varying facial deformations
• 3D face recognition under occlusion

FRVT2006 has shown that significant progress has been made in dealing
with external factors such as illumination and pose. The internal factors are
now being addressed as well: In recent years, significant research effort has
focused on expression-invariant 3D face recognition; and new databases that
incorporate expression variations have become available. The time factor and
deception attacks are yet to be addressed. Here, we point to the outstanding
challenges and go over a case study for expression invariant face recognition.

Challenge 1: How to deal with changes in appearance in time The
first factor that comes to mind when time is mentioned is naturally occurring
ageing. A few attempts have been made to model ageing [50]. However, inten-
tional or cosmetic attempts to change the appearance pose serious challenges
as well: Beards, glasses, hairstyle and make-up all hamper the operation of
face recognition algorithms. Assume the following case where we have a sub-
ject that grows a beard from time to time. Figure 1.3 shows sample 2D and
3D images of a person with or without beard. The gallery image of the subject
can be bearded or not, but these cases are not symmetrical.

(a) (b) (c) (d)

Fig. 1.3 2D and 3D images of a subject with and without beard and corresponding depth
images.

Figure 1.4 shows the matching results for an experiment conducted with a
48-image gallery from the Bosphorus database, enhanced with such a subject.
In the first case (the first three lines), the query is bearded, and the gallery
image is not. Depending on the expression of the query (the first line), the
correct image is mostly located in the gallery (the second line). The third line
gives rank-1 match for a eye-region based registration and matching, and it is
more successful. The second batch of experiments tell a different story. Now
the gallery image is bearded, whereas the query (the fourth line) is not. This
time, the full-scan registration fails to retrieve the correct gallery image for
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the whole range of queries (the fifth line). The reason for this failure is the
change in query image-gallery image distances. The total distance between
the bearded and non-bearded images of the subject does not change, but it is
large when compared to the distance between a non-bearded query image and
a non-bearded gallery image belonging to a different subject. Thus, in the
first experiment, the query produces large distances to all gallery images, from
which the correct one can be retrieved, but in the second experiment, non-
bearded false positives dominate because of their generally smaller distances.
Subsequently, it is better to have the non-bearded face in the gallery. Alterna-
tively, bearded subjects can be pre-identified and matched with region-based
methods. The sixth line of Figure 1.4 shows that the eye-region based matcher
correctly identifies the query in most of the cases.

Fig. 1.4 The effect of beard for 3D face recognition. For each experiment, three lines of
images are given: the query, rank-1 matched face with a complete facial matching, and
rank-1 matched face with a eye-region based matching. The correct matches are shown
with black borders. See text for more details.

Challenge 2: How to deal with Internal Factors
The facial surface is highly deformable. It has a single joint, the jaw;

which is used to open the mouth; and sets of facial muscles that are used
to open and close the eyes and the mouth, and to move the facial surface.
The principal objective of mouth movements is speech; and the secondary
objective of all facial deformations is to express emotions. Face recognition
has largely ignored movement and assumed that the face is still. In recent
years, many researchers have focused on expression invariant face recognition.

Here, we present a case study showing how expressions change the facial
surface, on a database collected for this purpose, and an example system
designed to deal with these variations.
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1.4.2 A Case Study:

We have outlined two challenges above: Dealing with internal variations such
as facial expressions and dealing with deception attacks, especially occlusions.
To develop robust algorithms that can operate under these challenges, one
needs to work with a special database that includes both a vast range of
expression changes and occlusions. In this section, we will first introduce a
database collected for these purposes, and then describe an example part-
based system that is designed to deal with variations in the facial surface.

1.4.2.1 Bosphorus DB

The Bosphorus database is a 2D-3D face database including extreme and
realistic expression, pose, and occlusion variations that may occur in real
life [86, 84]. For facial data acquisition, a structured-light based 3D digitizer
device, Inspeck Mega Capturor II 3D, is utilized. During acquisition, vertical
straight lines are projected on the facial surface, and the reflections are used
for information extraction. For 3D model reconstruction, a region of interest
including the central facial region is manually selected, thus the background
clutter is removed. The 3D sensor has 0.3mm, 0.3mm and 0.4mm sensitivity
in x,y, and z respectively, and a typical pre-processed scan consists of approxi-
mately 35K points. The texture images are high resolution (1600×1200) with
perfect illumination conditions.

After the reconstruction and preprocessing phases, 22 fiducial points have
been manually labeled on both 2D and 3D images, as shown in Fig. 1.5.

The Bosphorus database contains a total of 3396 facial scans acquired from
81 subjects, 51 men and 30 women. Majority of the subjects are Caucasian
and aged between 25 and 35. The Bosphorus database has two parts: the first
part, Bosphorus v.1, contains 34 subjects and each of these subjects has 31
scans: ten types of expressions, 13 different poses, four occlusions, and four
neutral/frontal scans. The second part, Bosphorus v.2, has more expression
variations. In the Bosphorus v.2, there are 47 subjects, each subject having
34 scans for different expressions including six emotional expressions and 28
facial action units, 13 scans for pose variations, four occlusions and one or two
frontal/neutral faces. 30 of these 47 subjects are professional actors/actresses.
Fig. 1.5 shows the total scan variations included in the Bosphorus v.2.

1.4.2.2 Example System

The rigid registration approaches are highly affected by facial expression di-
versities. To deal with deformations caused by expressions, we apply rigid
registration in a regional manner. Registering all gallery faces to a common
AFM off-line decreases run time cost. Motivated from this approach, we pro-
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Fig. 1.5 a)Manually located landmark points and scan variations for the Bosphorus
database.

posed to use regional models for regional dense registration. The Average
Regional Models (ARMs) are constructed by manually segmenting an AFM.
These ARMs are used for indexing the regions on gallery and probe faces.
After regions are extracted, the facial segments can be used for recognition.

ARM-based Registration: In regional registration, each region is con-
sidered separately when aligning two faces. For fast registration we have
adapted the AFM-based registration for regions, where regional models act
as index files. ARMs are obtained by manually segmenting a whole facial
model. The average model is constructed using the gallery set. In this study,
we have divided the face into four basic logical regions: forehead-eyes, nose,
cheeks, mouth-chin. In Fig. 1.7, the AFM for the Bosphorus v.1 database and
the constructed ARMs are given.

In ARM-based registration, a test face is registered individually to each
regional model and the related part is labeled and cropped. Registering a test
face to the whole gallery consists of four individual alignments, one specific
for each region.

Part-based Recognition: After registering test faces to ARMs, the
cropped 3D point clouds are regularly re-sampled, hence the point set differ-
ence calculation is reduced to a computation between only the depth vectors.

As a result of point set difference calculations, four dissimilarity measure
sets are obtained to represent distance between gallery and test faces. Each
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Fig. 1.6 The outline of the proposed system which consists of several steps: facial model
construction, dense registration, coarse registration, classification.

(a) (b)

Fig. 1.7 (a)AFM for the Bosphorus v.1 gallery set, (b) four ARMs for forehead-eyes, nose,
cheeks and mouth-chin regions.

regional registration is considered as an individual classifier and fusion tech-
niques are applied to combine regional classification results. In this study, we
have utilized various fusion approaches from different levels: plurality vot-
ing at the abstract-level; sum rule and product rule at the score-level and
modified plurality voting at the abstract level [38].

In plurality voting (PLUR), each classifier votes for the nearest gallery
identity and the identity with the highest vote is assigned as the final label.
When there are ties among closest classes, the final label is assigned randomly
among these class labels. In modified plurality voting, each classifier votes for
the nearest gallery identity and the identity with the highest vote is assigned
as the final label. A value to define the confidence of a classifier is also present
and when there are ties, the label of the class with the highest confidence is
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chosen as the final decision. More details on confidence-aided fusion methods
can be found in [38], [37].

At the score-level, SUM and PRODUCT rules are tested, where similarity
scores of individual classifiers are fused using simple arithmetic operations.
For these approaches, the scores are normalized with the min-max normal-
ization method prior to fusion.

Experiments: In our experiments, we have utilized both v.1 and v.2 of
the Bosphorus database. For each version, we have grouped the first neutral
scan of each subject into the gallery. The scans containing expression and AU
variations are grouped into the probe set. The number of scans in each gallery
and probe set are given in Table 1.4. It is observed that when expressions
are present, the baseline AFM-based classifier’s performance drops by about
30%.

Table 1.4 Gallery and probe sets for Bosphorus Db. AFM-based ICP accuracies are also
shown for each version.

Bosphorus Gallery Probe AFM results

v.1
neutral scans 34 102 100.00%

expression scans - 339 71.39%

v.2
neutral scans 47 - -

expression scans - 1508 67.67%

To deal with expression variations, we have proposed to use a part-based
registration approach. The ICP registration is greatly affected by the ac-
curacy of the coarse alignment of surfaces. To analyze the affect, we have
proposed two different coarse alignment approaches for the ARM-based reg-
istration. The first method is referred to as the one-pass registration, where
coarse alignment of facial surfaces are handled by Procrustes analysis of 22
manual landmarks. In the second approach, namely the two-pass registration,
before registering with the regional models, dense alignment with the AFM
is obtained.

In Table 1.5, recognition accuracies obtained for ARM-based registration
using both coarse alignment approaches are given. As observed in the results,
when expression diversity is large, as in v.2, better results are obtained by
utilizing the two-pass registration.

As the results in Table 1.5 exhibit, the nose and forehead-eyes regions are
less affected by deformations caused by facial expressions and therefore these
regional classifiers yield better results. However, different expressions affect
different facial regions, and fusing the results of all regions always yields better
results than relying on a single region. Table 1.6 shows the results of fusion
using different fusion rules on scores obtained by the two-pass registration. It
is observed that the best performance is achieved by the product rule. Above
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Table 1.5 Comparison of coarse alignment approaches.

ARM
One-pass Two-pass
v.1 v.2 v.1 v.2

forehead-eyes 82.89 82.16 82.89 83.09
nose 85.55 82.23 85.84 83.95

cheeks 53.39 52.12 54.57 51.72
mouth-chin 42.48 34.55 45.72 34.95

95% for both datasets. It is observed that this performance is more than 10%
above the performance of the best regional classifier, the nose.

The accuracy of the MOD-PLUR method, which utilizes the classifier con-
fidences, follows the performance of the product rule. The second score-level
fusion method we have used, the sum rule, does not perform as good as the
product rule or the confidence-aided fusion schemes. The accuracy of the sum
rule can be improved by weighting the effect of regional classifiers. For the
weighted-sum rule, the weights are calculated from an independent set: We
have used v.1 to calculate the weights for the v.2. The optimal weights cal-
culated from the v.1 database are: wnose = 0.40, weye = 0.30, wcheek = 0.10,
and wchin = 0.20. Due to the weights chosen, nose and forehead-eyes regions
have greater contribution to total recognition performance.

Table 1.6 Recognition rates (%) for fusion techniques.

Fusion Method v.1 v.2

MOD-PLUR 94.40 94.03
SUM 88.79 91.78
Weighted SUM 93.51 93.50
PROD 95.87 95.29

1.5 Conclusions

3D face recognition has matured to match the performance of 2D face recog-
nition. When used together with 2D, it makes face a very strong biometric:
Face as a biometric modality is widely acceptable for the general public, and
face recognition technology is able to meet the accuracy demands of a wide
range of applications.

While the accuracy of algorithms have met requirements in controlled
tests, 3D face recognition systems have yet to be tested under real application
scenarios. For certain application scenarios such as airport screening and
access control, systems are being tested in the field. The algorithms in these
application scenarios will need to be improved to perform robustly under
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time changes and uncooperative users. For other application scenarios, such as
convenience and consumer applications, the technology is not yet appropriate:
The sensors should get faster, cheaper and less intrusive; and algorithms
should adapt to the new sensor technologies to yield good performance with
coarser and noisier data.

One property of 3D face recognition sets it apart from other biometric
modalities: It is inherently a multimodal biometric, comprising texture and
shape. Therefore, a lot of research efforthas gone into the fusion of 2D and
3D information. There are yetareas to be explored in the interplay of 2D and
3D: How to obtain one from the other; how to match one to the other, how
to use one to constrain the other. In the future, with the widespread use of
3D video, the time dimension will open new possibilities for research, and it
will be possible to combine 3D face with behavioral biometrics expressed in
the time dimension.

1.6 Questions

• What are the advantages of 3D over 2D for face recognition, and vice
versa? Would a 2D+3D system overcome the drawbacks of each of these
systems, or suffer under all these drawbacks?

• Consider the five scenarios presented in the first section. What are the se-
curity vulnerabilities for each of these scenarios? How would you overcome
these vulnerabilities?

• Propose a method for a 3D-face based biometric authentication system for
banking applications. Which sensor technology is appropriate? How would
the biometric templates be defined? Where would they be stored? What
would be the processing requirements?

• Discuss the complexity of an airport security system, in terms of memory
size and processing load, under different system alternatives.

• If the 3D data acquired from a sensor is noisy, what can be done?
• How many landmark points are needed for a 3D FR system? Where would

they be chosen?
• What are the pros and cons of deformable registration vs. rigid registra-

tion?
• Propose an analysis-by-synthesis approach for 3D face recognition.
• Is feature extraction possible before registration? If yes, propose a method.
• Suppose a 3DFR system represents shape features by Mean and Gaussian

curvatures, and texture features by Gabor features. Which fusion approach
is appropriate? Data level or decision level fusion? Discuss and propose a
fusion method.

• What would you do to deceive a 3D face recognizer? What would you add
to the face recognition system to overcome your deception attacks?
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22. K. I. Chang, K. W. Bowyer, and P. J. Flynn. An evaluation of multi-modal 2D+3D
face biometrics. IEEE Trans. on PAMI, 27(4):619–624, 2005.

23. C.S. Chua, F. Han, and Y.K. Ho. 3d human face recognition using point signature. In
Proc. IEEE International Conference on Automatic Face and Gesture Recognition,
pages 233–238, 2000.

24. D. Colbry, G. Stockman, and A.K. Jain. Detection of anchor points for 3d face veri-
fication. In Proc. IEEE Workshop on Advanced 3D Imaging for Safety and Security,
2005.

25. Alessandro Colombo, Claudio Cusano, and Raimondo Schettini. 3d face detection
using curvature analysis. Pattern Recogn., 39(3):444–455, 2006.
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Neşe Alyüz, Bülent Sankur, İlkay Ulusoy, Lale Akarun, and T. Metin Sezgin. 3D
face recognition performance under adversarial conditions. In Proc. eNTERFACE07
Workshop on Multimodal Interfaces, 2007.

87. A. Scheenstra, A. Ruifrok, and R.C. Veltkamp. A survey of 3D face recognition
methods. Proceedings of the International Conference on Audioand Video-Based
Biometric Person Authentication (AVBPA), 2005.

88. R. Senaratne and S. Halgamuge. Optimised Landmark Model Matching for Face
Recognition. Proc. 7th Int. Conf. on Automatic Face and Gesture Recognition, pages
120–125, 2006.

89. Myung Soo-Bae, Anshuman Razdan, and Gerald Farin. Automated 3d face authen-
tication and recognition. In IEEE International Conference on Advanced Video and
Signal based Surveillance, 2007.

90. H. Tanaka, M. Ikeda, and H. Chiaki. Curvature-based face surface recognition using
spherical correlation principal directions for curved object recognition. In Interna-
tional Conference on Automated Face and Gesture Recognition, pages 372–377, 1998.

91. J.R. Tena, M. Hamouz, A.Hilton, and J. Illingworth. A validated method for dense
non-rigid 3d face registration. In International Conference on Video and Signal Based
Surveillance, pages 81–81, 2006.

92. F. Tsalakanidou, S. Malassiotis, and M. Strinzis. Integration of 2d and 3d images for
enhanced face authentication. In Proc. AFGR, pages 266–271, 2004.

93. F. Tsalakanidou, D. Tzovaras, and M. Strinzis. Use of depth and colour eigenfaces
for face recognition. Pattern Recognition Letters, 24:1427–1435, 2003.

94. Y. Wang and C.-S. Chua. Face recognition from 2d and 3d images using 3d gabor
filters. Image and Vision Computing, 23(11):1018–1028, 205.

95. Y. Wang and C.S. Chua. Robust face recognition from 2D and 3D images using
structural Hausdorff distance. Image and Vision Computing, 24(2):176–185, 2006.

96. Y. Wang, G. Pan, Z.Wu, and S. Han. Sphere-spin-image: A viewpoint-invariant
surface representation for 3D face recognition. In ICCS, LNCS 3037, pages 427–434,
2004.

97. B. Weyrauch, J. Huang, B. Heisele, and V. Blanz. Component-based face recognition
with 3d morphable models. In Proc. First IEEE Workshop on Face Processing in
Video, 2004.
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102. Y. Yan and K. Challapali. A system for the automatic extraction of 3-d facial feature
points for face model calibration. Proc. Int. Conf. on Image Processing, 2:223–226,
2000.

103. Lijun Yin, Xiaozhou Wei, Yi Sun, Jun Wang, and M.J. Rosato. A 3D facial expression
database for facial behavior research. In Proc of FGR, pages 211–216, 2006.

104. Liyan Zhang, Anshuman Razdan, Gerald Farin, John Femiani, Myungsoo Bae, , and
Charles Lockwood. 3d face authentication and recognition based on bilateral sym-
metry analysis. The Visual Computer, 22(1):43–55, 2006.

105. C. Zhong, T. Tan, C. Xu, and J. Li. Automatic 3D face recognition using discriminant
common vectors. International Conference on Biometrics, LNCS, 3832:85–91, 2006.

106. Cheng Zhong, Zhenan Sun, and Tieniu Tan. Robust 3D face recognition using learned
visual codebook. In Proc of CVPR, pages 1–6, 2007.

107. Le Zou, S. Cheng, Zixiang Xiong, Mi Lu, and K. R. Castleman. 3-d face recog-
nition based on warped example faces. Information Forensics and Security, IEEE
Transactions on, 2(3):513–528, Sept. 2007.


