Skip to main content

Reaction–Diffusion Controllers for Robots

  • Chapter
  • 928 Accesses

Excitable systems, particularly spatially extended media, exhibit a wide variety of travelling patterns and different modes of interaction. The Belousov—Zhabo-tinsky [1] (BZ) reaction is the most well known and extensively studied example of non-linear chemical system exhibiting complex behaviour. The BZ reaction is well known to exhibit spontaneous oscillatory behaviour. The mechanistic details are complex but involve a fine balance between an auto-catalytic oxidation process and an inhibitor of the autocatalytic reaction. If the chemical conditions are altered beyond the point where the reaction exhibits spontaneous oscillatory behaviour, then the BZ reaction exhibits a property known as excitability. An excitable system has a steady state and is stable to small perturbations; however, if the perturbations exceed a critical threshold, then the system responds with an excitation event. In the case of a thin layer architecture, this results in a circular wave travelling from the source of the perturbation. Parts of the wave front annihilate when they reach the boundaries or collide with other fronts; however, other parts will propagate across the whole free area of the reactor. Because the BZ system is excitable and due to the properties of wave propagation, it can be considered as a uniform locally connected primitive neural network (a type of neural network similar to that in Protozoa). The information processing capabilities of BZ media are relatively well studied in the framework of reaction—diffusion computing [2, 3]. A reaction—diffusion processor is the term used to describe an experimental chemical reactor which computes by sensibly, purposefully and predictably transforming the initial local disturbances in the chemical concentration profiles — the data pattern — into dynamical structures such as travelling excitation waves, or stationary output such as a spatial distribution of precipitate — result patterns — in these processors the computation is implemented via the interaction of either diffusive or phase waves in the chemical system [2, 3]. Reaction—diffusion processors of this general type possess an amorphous structure (absence of any type of rigid hardware-like architecture in the processor's liquid phase) and massive parallelism (a thin layer Petri dish may contain thousands of elementary computing micro-volumes).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zaikin, A.N., Zhabotinsky, A.M.: Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225, 535 (1970)

    Article  Google Scholar 

  2. Adamatzky, A.: Computing in Automata Media and Automata Collectives. IoP (2001)

    Google Scholar 

  3. Adamatzky, A., De Lacy Costello, B., Asai, T.: Reaction Diffusion Computers. Elsevier (2005)

    Google Scholar 

  4. Yokoi, H., Adamatzky, A., De Lacy Costello, B., Melhuish C.: Excitable chemical medium controlled by a robotic hand: closed loop experiments. Int. J. Bifurcat. Chaos 14, 3347–3354 (2004)

    Article  MATH  Google Scholar 

  5. Field, R. J., Winfree, A. T.: Travelling waves of chemical activity in the Zaikin—Zhabotinsky— Winfree reagent. J. Chem. Educ. 56, 754 (1979)

    Article  Google Scholar 

  6. Adamatzky, A., De Lacy Costello, B., Melhuish, C., Ratcliffe, N.: Experimental implementation of mobile robot taxis with onboard Belousov—Zhabotinsky chemical medium. Mater. Sci. Eng. C 24, 541–548 (2004)

    Article  Google Scholar 

  7. Adamatzky, A., De Lacy Costello, B., Skachek, S., Melhuish, C.: Manipulating objects with chemical waves: Open loop case of experimental Belousiv-Zhabotinsky medium. Phys. Lett. A, 350(3–4), 201–209, 6 February (2006)

    Article  Google Scholar 

  8. Skachek, S., Adamatzky, A., Melhuish, C.: Manipulating objects by discrete excitable media coupled with contact-less actuator array: Open-loop case. Chaos Solitons Fractals 26, 1377– 1389 (2005)

    Article  Google Scholar 

  9. Ishikawa, Y., Yu, W., Yokoi, H., Kakazu, Y.: Development of robot hands with an adjustable power transmitting mechanism, In: Cihan H. Dagli et al. Eds. Proc. Intell. Engineer. Syst. Through Artificial Neural Networks 10, 631–636 (2000)

    Google Scholar 

  10. Adamatzky, A.: Does Physarum follow Toussaint conjecture? Parallel Processing Letters (2008)

    Google Scholar 

  11. Nakagaki, T., Yamada, H., Toth, A.: Maze-solving by an amoeboid organism. Nature 407, 470–470 (2000)

    Article  Google Scholar 

  12. Nakagaki T.: Smart behavior of true slime mold in a labyrinth. Res. Microbiol. 152, 767–770 (2001)

    Article  Google Scholar 

  13. Nakagaki T., Yamada H., Toth A.: Path finding by tube morphogenesis in an amoeboid organism. Biophys. Chem. 92, 47–52 (2001)

    Article  Google Scholar 

  14. Nakagaki, T., Yamada, H., Hara, M.: Smart network solutions in an amoeboid organism. Bio-phys. Chem. 107, 1–5 (2003)

    Article  Google Scholar 

  15. Tsuda, S., Aono, M., Gunji, Y.-P.: Robust and emergent Physarum computing. BioSystems 73, 45–55 (2004)

    Article  Google Scholar 

  16. Tsuda, S., Zauner, K. P., Gunji, Y. P.: Robot control with biological cells. Biosystems, 87, 215–223 (2007)

    Article  Google Scholar 

  17. Adamatzky, A.: Physarum machines: encapsulating reaction-diffusion to compute spanning tree. Naturwisseschaften (2007)

    Google Scholar 

  18. Matsumoto, K., Ueda, T., Kobatake, Y.: Reversal of thermotaxis with oscillatory stimulation in the plasmodium of Physarum polycephalum. J. Theor. Biol. 131, 175–182 (1998)

    Article  Google Scholar 

  19. Nakagaki, T., Yamada, H., Ito, M.: Reaction-diffusion-advection model for pattern formation of rhythmic contraction in a giant amoeboid cell of the Physarum plasmodium J. Theor. Biol. 197, 497–506 (1999)

    Article  Google Scholar 

  20. Yamada H., Nakagaki T., Baker R. E., Maini P.K.: Dispersion relation in oscillatory reaction-diffusion systems with self-consistent flow in true slime mold. J. Math. Biol. 54, 745–760 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Adamatzky A. Growing spanning trees in plasmodium machines. Kybernetes, 37, 258–264 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Adamatzky, A.: Physarum machine: implementation of a Kolmogorov-Uspensky machine on a biological substrate. Parallel Process. Lett. 17 (2008)

    Google Scholar 

  23. Shimizu, M., Ishiguro, A.: Amoeboid locomotion having high fluidity by a modular robot. Int. J. Unconventional Comput. (2008), in press

    Google Scholar 

  24. Yokoi, H., Kakazu, Y.: Theories and applications of autonomic machines based on the vibrating potential method, In: Proc. Int. Symp. Distributed Autonomous Robotics Systems, 31–38 (1992)

    Google Scholar 

  25. Yokoi, H., Nagai, T., Ishida, T., Fujii, M., Iida, T.: Amoeba-like robots in the perspective of control Architecture and morphology/materials, In: Hara, F. and Pfeifer, R. (Eds.) Morpho-Functional Machines: The New Species, Springer, Tokyo, 99–129 (2003)

    Google Scholar 

  26. Adamatzky, A.: Towards Physarum robots: computing and manipulating on water surface (2008) arXiv:0804.2036v1 [cs.RO]

    Google Scholar 

  27. Hosokawa, K., Shimoyama, I., Miura, H.: Two-dimensional micro-self-assembly using the surface tension of water. Sens. Actuators A 57, 117–125 (1996)

    Article  Google Scholar 

  28. McAlister, W. H.: The diving and surface-walking behaviour of Dolomedes triton sexpuncta-tus (Araneida: Pisauridae). Animal Behav. 8, 109–111 (1959)

    Article  Google Scholar 

  29. Suter, R. B., Wildman, H.: Locomotion on the water surface: hydrodynamic constraints on rowing velocity require a gait change. J. Exp. Biol. 202, 2771–2785 (1999)

    Google Scholar 

  30. Suter, R. B.: Cheap transport for fishing spiders: the physics of sailing on the water surface. J. Arachnol. 27, 489–496 (1999)

    Google Scholar 

  31. Suter, R. B., Rosenberg, O., Loeb, S., Wildman, H., Long, J. Jr.: Locomotion on the water surface: propulsive mechanisms of the fisher spider, Dolomedes triton. J. Exp. Biol. 200, 2523–2538 (1997)

    Google Scholar 

  32. Adamatzky, A., De Lacy Costello, B., Shirakawa T.: Universal computation with limited resources: Belousov-Zhabotinsky and Physarum computers. Int. J. of Bifurcation and Chaos (IJBC), 18(8), 2373–2389 (2008)

    Article  Google Scholar 

  33. Kennedy, B., Melhuish, C., Adamatzky, A.: Biologically Inspired Robots in In: Y. Bar-Cohen (Ed) Electroactive polymer (EAP) actuators — Reality, Potential and challenges. SPIE, (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Adamatzky, A., De Lacy Costello, B., Yokoi, H. (2009). Reaction–Diffusion Controllers for Robots. In: Adamatzky, A., Komosinski, M. (eds) Artificial Life Models in Hardware. Springer, London. https://doi.org/10.1007/978-1-84882-530-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-530-7_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-529-1

  • Online ISBN: 978-1-84882-530-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics