Skip to main content

Perception for Action in Roving Robots: A Dynamical System Approach

  • Chapter
  • 905 Accesses

For a mobile robot working in the real world, the ability to interpret information coming from the environment is crucial, both for its survival and for its accomplishing tasks. The cognitive capabilities of a robotic system are defined by the way in which the information gathered from sensors are processed to produce a specific action or behavior. Two broad classes can be distinguished: the cognitivist approach based on symbolic information processing and the emergent systems approach that is directed to the application of dynamical systems connected to the principles of self-organization [39]. Among the numerous solutions proposed by researchers, a great part is located in between the two main approaches.

In the recent past, research was directed towards endowing a robot with capabilities of self-creating an internal representation of the environment. Experiments in real world differ from applications in structured environments because they are mostly dynamically changing, so that it is impossible to program robot behaviors only on the basis of a priori knowledge. Moreover, the control loop must be able to process the different stimuli coming from the environment in a time that must be compatible with the real time applications. To solve these open problems, research activities have been focused on suitable solutions obtained taking inspiration from nature and applying biological principles to develop new control systems for perception—action purposes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alba, L., Arena, P., De Fiore, S., Listan, J., Patané, L., Scordino, G., Webb, B.: Multi-sensory architectures for action-oriented perception. In: Proceedings of Microtechnologies for the New Millennium (SPIE'2007). Gran Canaria, Spain (2007)

    Google Scholar 

  2. Altera Corporation: Altera home page. http://www.altera.com.

  3. Anafocus sl: Eye-ris producer home page. http://www.anafocus.com.

  4. Aradi, I., Barna, G., Erdi, P.: Chaos and learning in the olfactory bulb. Int. J. Intell. Syst. 10(1), 89–117 (1995)

    Article  MATH  Google Scholar 

  5. Arena, P., Crucitti, P., Fortuna, L., Frasca, M., Lombardo, D., Patané, L.: Turing patterns in rd-cnns for the emergence of perceptual states in roving robots. Bifurcation Chaos 17(1), 107–127 (2007)

    Article  MATH  Google Scholar 

  6. Arena, P., De Fiore, S., Fortuna, L., Frasca, M., Patané, L., Vagliasindi, G.: Reactive navigation through multiscroll systems: from theory to real-time implementation. Autonomous Robots 25(1–2), 123–146 (2007)

    Google Scholar 

  7. Arena, P., Fortuna, L., Frasca, M., Hulub, M.: Implementation and synchronization of 3 × 3 grid scroll chaotic circuits with analog programmable devices. Chaos 16(1) (2006)

    Google Scholar 

  8. Arena, P., Fortuna, L., Frasca, M., Lo Turco, G., Patané, L., Russo, R.: A new simulation tool for actionoriented perception systems. In: Proceedings of 10th IEEE International Conference on Emerging Technologies and Factory Automation (EFTA'2005), pp. 19–22. Catania, Italy (2005)

    Google Scholar 

  9. Arena, P., Fortuna, L., Frasca, M., Lombardo, D., Patané, L.: Learning efference in cnns for perception-based navigation control. In: Proceedings of International Symposium on Nonlinear Theory and its Applications (NOLTA'2005), pp. 18–21. Bruges, Belgium (2005)

    Google Scholar 

  10. Arena, P., Fortuna, L., Frasca, M., Pasqualino, R., Patané, L.: Cnns and motor maps for bioinspired collision avoidance in roving robots. In: 8th IEEE Int. Workshop on Cellular Neural Networks and their Applications (CNNA'2004). Budapest (2004)

    Google Scholar 

  11. Arena, P., Fortuna, L., Frasca, M., Patané, L.: Sensory feedback in CNN-based central pattern generators. Int. J. Neural Syst. 13 (6), 349–362 (2003)

    Article  Google Scholar 

  12. Arena, P., Fortuna, L., Frasca, M., Patané, L., Pavone, M.: Towards autonomous adaptive behavior in a bio-inspired cnn-controlled robot. In: Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS'2006), pp. 21–24. Island of Kos, Grecia (2006)

    Google Scholar 

  13. Arena, P., Patané, L.: Spatial Temporal Patterns for Action Oriented Perception in Roving Robots. Springer, Berlin (2008)

    Google Scholar 

  14. Arkin, R.C.: Behavior-Based Robotics. MIT Press, Cambridge, MA (1998)

    Google Scholar 

  15. Boccaletti, S., Grebogi, C., Lai, Y.C., Mancini, H., Maza, D.: The control of chaos: theory and applications. Phys. Rep. 329, 103–197 (2000)

    Article  MathSciNet  Google Scholar 

  16. Freeman, W.J.: The physiology of perception. Sci. Am. 264(2), 78–85 (1991)

    MathSciNet  Google Scholar 

  17. Freeman, W.J.: Characteristics of the synchronization of brain activity imposed by finite conduction velocities of axons. Bifurcation Chaos 10(10), 2307–2322 (1999)

    Article  Google Scholar 

  18. Freeman, W.J.: A neurobiological theory of meaning in perception. Part I: Information and meaning in nonconvergent and nonlocal brain dynamincs. Bifurcation Chaos 13(9), 2493– 2511 (2003)

    MATH  MathSciNet  Google Scholar 

  19. Freeman, W.J.: How and why brains create meaning from sensory information. Bifurcation Chaos 14(2), 515–530 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Freeman, W.J., Kozma, R.: Local-global interactions and the role of mesoscopic (intermediaterange) elements in brain dynamics. Behav. Brain Sci. 23(3), 401 (2000)

    Article  Google Scholar 

  21. Gutierrez-Osuna, R., Gutierrez-Galvez, A.: Habituation in the kiii olfactory model with chemical sensor arrays. IEEE Trans. Neural Netw. 14(6), 1565–1568 (2003)

    Article  Google Scholar 

  22. Harter, D., Kozma, R.: Chaotic neurodynamics for autonomous agents. IEEE Trans. Neural Netw. 16(3), 565–579 (2005)

    Article  Google Scholar 

  23. Kohonen, T.: Self-organized formation of topologically correct feature maps. Bio. Cybern. 43(1), 59–69 (1972)

    Article  Google Scholar 

  24. Kozma, R., Freeman, W.J.: Chaotic resonance — methods and applications for robust classification of noisy and variable patterns. Bifurcation Chaos 11(6), 1607–1629 (2000)

    Article  Google Scholar 

  25. Kuniyoshi, Y., Sangawa, S.: Emergence and development of motor behavior from neural-body coupling. In: Proc. IEEE Int. Conference on Robotics and Automation (ICRA'2007). Rome, Italy (2007)

    Google Scholar 

  26. Lapidus, L., Seinfeld, J.: Numerical Solution of Ordinary Differential Equations. Academic Press, New York (1971)

    MATH  Google Scholar 

  27. Lu, J., Chen, G., Yu, X., Leung, H.: Design and analysis of multiscroll chaotic attractors from saturated function series. IEEE T Circuits-I 51(12), 2476–2490 (2004)

    Article  MathSciNet  Google Scholar 

  28. Makarov, V.A., Castellanos, N.P., Velarde, M.G.: Simple agents benefits only from simple brains. Trans. Eng. Comput. Tech. 15, 25–30 (2006)

    Google Scholar 

  29. Manganaro, G., Arena, P., Fortuna, L.: Cellular Neural Networks: Chaos, Complexity and VLSI processing. Springer, Berlin (1999)

    MATH  Google Scholar 

  30. Murray, J.D.: Mathematical Biology. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  31. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11) (1990)

    Google Scholar 

  32. Pyragas, K.: Continuos control of chaos by self-controlling feedback. Phys. Lett. A 170, 421–428 (1992)

    Article  Google Scholar 

  33. Pyragas, K.: Predictable chaos in slightly pertirbed unpredictable chaotic systems. Phys. Lett. A 181, 203–210 (1993)

    Article  Google Scholar 

  34. Reeve, R., Webb, B.: New neural circuits for robot phonotaxis. Phil. Trans. R. Soc. A 361, 2245–2266 (2002)

    Article  MathSciNet  Google Scholar 

  35. Ritter, H., Martinetz, T., Schulten, K.: Neural Computation and Self-Organizing Maps. Addison Wesley, Reading, MA (1992)

    MATH  Google Scholar 

  36. Skarda, C.A., Freeman, W.J.: How brains make chaos in order to make sense of the world. Behav. Brain Sci. 10, 161–195 (1987)

    Article  Google Scholar 

  37. SPARK Project: Spark eu project home page.http://www.spark.diees.unict.it

  38. Steels, L., Brooks, R.A.: The Artificial Life Route to Artificial Intelligence: Building Embodied Situated Agents. Lawrence Erlbaum Associates, Hillsdale (1995)

    Google Scholar 

  39. Vernon, D., Metta, G., Sandini, G.: A survey of artificial cognitive systems: implications for the autonomous development of mental capabilities in computational agents. IEEE T. Evolut. Comput. 11(2), 151–180 (2007)

    Article  Google Scholar 

  40. Webb, B., Scutt, T.: A simple latency dependent spiking neuron model of cricket phonotaxis. Biol. Cybern. 82 (3), 247–269 (2000)

    Article  Google Scholar 

  41. Yalcin, M.E., Suykens, J.A.K., Vandewalle, J., Ozoguz, S.: Families of scroll grid attractors. Bifurcation Chaos 12(1), 23–41 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Arena, P., De Fiore, S., Patané, L. (2009). Perception for Action in Roving Robots: A Dynamical System Approach. In: Adamatzky, A., Komosinski, M. (eds) Artificial Life Models in Hardware. Springer, London. https://doi.org/10.1007/978-1-84882-530-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-530-7_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-529-1

  • Online ISBN: 978-1-84882-530-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics