Skip to main content

Tribolon: Water-Based Self-Assembly Robots

  • Chapter

Self-assembly is a process through which an organized structure spontaneously forms from simple parts. This process is ubiquitous in nature, and its amazing power is documented by many fascinating instances operating at various spatial scales. Despite its crucial importance, little is known about the mechanisms underlying self-assembly and not much effort has been devoted to abstract higher level design principles. Taking inspiration from biological examples of self-assembly, we designed and built a series of modular robotic systems consisting of centimeter size autonomous plastic tiles capable of aggregation on the surface of water. According to the characteristics of the modules composing them, the systems were classified as “passive,” “active,” and “connectable.” We conducted experiments specifically aimed demonstrating the power of behavioral representation of each system with respect to the level of autonomy of its components. We focused mainly on the effect of the morphology (here shape) of the modules, in particular on the yield of the self-assembly process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leiman, P.G., Kanamaru, S., Mesyanzhinov, V.V., Arisaka, F., Rossmann, M.G.: Structure and morphogenesis of bacteriophage t4. Cellular and Molecular Life Sciences 60, 2356–2370 (2003)

    Article  Google Scholar 

  2. Zlotnick, A.: Theoretical aspects of virus capsid assembly. Molecular Recognition 18, 479–490 (2005)

    Article  Google Scholar 

  3. Fukuda, T., Kawauch, Y.: Cellular robotic system (cebot) as one of the realizations of self-organizing intelligent universal manipulator. In: Proc. Int. Conf. on Robotics and Automation, pp. 662–667 (1990)

    Google Scholar 

  4. Nakano, K., Uchihashi, S., Umemoto, N., Nakagama, H.: An approach to evolutional system. In: First IEEE Conference on Evolutionary Computation (1994)

    Google Scholar 

  5. Chirikjian, G.S.: Kinematics of a metamorphic robotic system. In: Proc. Int. Conf. on Robotics and Automation, pp. 449–455 (1994)

    Google Scholar 

  6. Murata, S., Kurokawa, H., Kokaji, S.: Self-assembling machine. In: Proc. Int. Conf. on Robotics and Automation, pp. 441–448 (1994)

    Google Scholar 

  7. Murata, S., Kurokawa, H., Yoshida, E., Tomita, K., Kokaji, S.: A 3-D self-reconfigurable structure. In: Proc. Int. Conf. on Robotics and Automation, pp. 432–439 (1998)

    Google Scholar 

  8. Murata, S., Tomita, K., Yoshida, E., Kurokawa, H., Kokaji, S.: Self-reconfigurable robot. In: Proc. Int. Conf. on Intelligent Autonomous Systems, pp. 911–917 (1999)

    Google Scholar 

  9. Yim, M.: New locomotion gaits. In: Proc. Int. Conf. on Robotics and Automation, vol. 3, pp. 2508–2514 (1994)

    Google Scholar 

  10. Kotay, K., Rus, D., Vona, M., McGray, C.: The self-reconfiguring robotic molecule. In: Proc. Int. Conf. on Intelligent Robots and Systems, vol. 1, pp. 424–431 (1998)

    Google Scholar 

  11. Rus, D., Vona, M.: Crystalline robots: Self-reconfiguration with compressible unit modules. Autonomous Robots 10(1), 107–124 (2001)

    Article  MATH  Google Scholar 

  12. Castano, A., Behar, A., Will, P.M.: The conro modules for reconfigurable robots. IEEE/ASME Transactions on Mechatronics 7(4), 403–409 (2002)

    Article  Google Scholar 

  13. Jorgensen, M.W., Ostergaard, E.H., Lund, H.H.: Modular atron: Modules for a self-reconfigurable robot. In: Proc. Int. Conf. on Intelligent Robots and Systems, vol. 2, pp. 2068–2073 (2004)

    Google Scholar 

  14. Zykov, V., Mutilinaios, E., Adams, B., Lipson, H.: Self-reproducing machines. Nature 435(7039), 163–164 (2005)

    Article  Google Scholar 

  15. Penrose, L.S.: Self-reproducing. Scientific American 200–206, 105–114 (1959)

    Article  Google Scholar 

  16. Hosokawa, K., Shimoyama, I., Miura, H.: Dynamics of self-assembling systems: Analogy with chemical kinetics. Artificial Life 1(4), 413–427 (1994)

    Article  Google Scholar 

  17. Hosokawa, K., Shimoyama, I., Miura, H.: 2-d micro-self-assembly using the surface tension of water. Sensors and Actuators A 57, 117–125 (1996)

    Article  Google Scholar 

  18. Bowden, N., Terfort, A., Carbeck, J., Whitesides, G.M.: Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science 276, 233–235 (1997)

    Article  Google Scholar 

  19. Grzybowski, B.A., Mechal Radkowski, Campbell, C.J., Lee, J.N., Whitesides, G.M.: Self-assembling fluidic machines. Applied Physics Letters 84, 1798–1800 (2004)

    Article  Google Scholar 

  20. Grzybowski, B.A., Stone, H.A., Whitesides, G.M.: Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid-air interface. Nature 405, 1033 (2000)

    Article  Google Scholar 

  21. Grzybowski, B.A., Winkleman, A., Wiles, J.A., Brumer, Y., Whitesides, G.M.: Electrostatic self-assembly of macroscopic crystals using contact electrification. Nature 2, 241–245 (2003)

    Article  Google Scholar 

  22. Saitou, K.: Conformational switching in self-assembling mechanical systems. IEEE Transactions on Robotics and Automation 15, 510–520 (1999)

    Article  Google Scholar 

  23. White, P., Kopanski, K., Lipson, H.: Stochastic self-reconfigurable cellular robotics. In: Proc. Int. Conf. on Robotics and Automation, vol. 3, pp. 2888–2893 (2004)

    Google Scholar 

  24. White, P., Zykov, V., Bongard, J., Lipson, H.: Three dimensional stochastic reconfiguration of modular robots. In: Proc. Int. Conf. on Robotics Science and Systems, pp. 161–168 (2005)

    Google Scholar 

  25. Shimizu, M., Ishiguro, A.: A modular robot that exploits a spontaneous connectivity control mechanism. In: Proc. Int. Conf. on Robotics and Automation, pp. 2658–2663 (2005)

    Google Scholar 

  26. Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., Nguyen, T.: Programmable parts: A demonstration of the grammatical approach to self-organization. In: Proc. Int. Conf. on Intelligent Robots and Systems, pp. 3684–3691 (2005)

    Google Scholar 

  27. Griffith, S., Goldwater, D., Jacobson, J.: Robotics: Self-replication from random parts. Nature 437, 636 (2005)

    Article  Google Scholar 

  28. Mao, C., LaBean, T.H., Reif, J.H., Seeman, N.C.: Logical computation using algorithmic self-assembly. Nature 407, 493–496 (2000)

    Article  Google Scholar 

  29. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)

    Article  Google Scholar 

  30. Seeman, N.C.: DNA in a material world. Nature 421, 427–430 (2003)

    Article  MathSciNet  Google Scholar 

  31. Shih, W.M., Quispe, J.D., Joyce, G.F.: A 1.7-kilobase single-stranded dna that folds into a nanoscale octahedron. Nature 427, 618–621 (2004)

    Article  Google Scholar 

  32. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional dna crystals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

  33. Yokoyama, T., Yokoyama, S., Kamikado, T., Okuno, Y., Mashiko, S.: Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature 413, 619–621 (2001)

    Google Scholar 

  34. Boncheva, M., Ferrigno, R., Bruzewicz, D.A., Whitesides, G.M.: Plasticity in self-assembly: Templating generates functionally different circuits from a single precursor. Angewandte Chemie International Edition 42, 3368–3371 (2003)

    Article  Google Scholar 

  35. Gracias, D.H., Tien, J., Breen, T.L., Hsu, C., Whitesides, G.M.: Forming electrical networks in three dimensions by self-assembly. Science 289, 1170–1172 (2000)

    Article  Google Scholar 

  36. Wolfe, D.B., Snead, A., Mao, C., Bowden, N.B., Whitesides, G.M.: Mesoscale self-assembly: Capillary interactions when positive and negitive menisci have similar amplitudes. Langmuir 19, 2206–2214 (2003)

    Article  Google Scholar 

  37. Miyashita, S., Kessler, M., Lungarella, M.: How morphology affects self-assembly in a stochastic modular robot. In: IEEE International Conference on Robotics and Automation, pp. 3533–3538 (2008)

    Google Scholar 

  38. Pfeifer, R., Scheier, C.: Understanding intelligence. MIT, Cambridge (2001)

    Google Scholar 

  39. Hayakawa, J. (ed.): Time of an elephant, time of a mouse. CHUO-KORON-SHINSHA (1992)

    Google Scholar 

  40. Alberts, B., Hohnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular biology of the cell. Garland Science, UK (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Miyashita, S., Lungarella, M., Pfeifer, R. (2009). Tribolon: Water-Based Self-Assembly Robots. In: Adamatzky, A., Komosinski, M. (eds) Artificial Life Models in Hardware. Springer, London. https://doi.org/10.1007/978-1-84882-530-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-530-7_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-529-1

  • Online ISBN: 978-1-84882-530-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics