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Abstract This paper presents a novel craniofacial 
visualization technique with the developments 
from both computer vision and graphics. It is a 
low radiation, low cost alternative to CT-based 
system for the reconstruction of 3D cranium 
using only three X-rays. We paste lead markers 
on the subject’s face which allow a 3D face 
model to be constructed by correlated vision. 
Then the surface of the cranium is obtained by 
subtracting soft tissue depth from face surface. 
We also present a new algorithm to solve the 
matching by evolutionary programming and 
designed a supervised learning method to 
estimate the soft tissue stiffness parameters. 

Keywords correlated vision; parameter 
estimation; surgery simulation; x-rays  

1 Introduction 

3D cranium reconstruction has received a lot of 
attention from both medical and computer 
graphics research communities, and is an 
effective approach for the visualization of the 
complex internal cranial structure. Existing 
methods acquire the raw image data by CT 
scanning, with which the volumetric geometry is 
reconstructed to produce a 3D computer graphics 
(CG) model of the head. They have been widely 
used in various medical visualization applications, 
including surgical planning, diagnosis and 
medical training.  
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Although it is justifiable to scan a subject by 
CT for serious diseases, such as tumour or 
accident-caused cranial trauma, the high dose of 
X-ray of CT scan can in many cases deter 
medical practitioners from taking advantage of 
the latest technology in computer graphics and 
visualization research. Taking orthodontic for 
young children as an example, CT scans are not 
very often used. One of the reasons is the X- ray 
dosage the subject receives. Statistics [1] 
suggests youngsters make up of about 80% of the 
patients in orthodontics and maxillofacial 
surgeries. And the x-rays dose from one CT head 
scan is approximately 20 times of the dose in one 
X-ray photographing. Large dose of X-ray 
radiation could have a serious adverse effect to 
the juvenile patient population. In addition, in 
comparison with ordinary X-ray photography 
(cephalometry), a CT scan is also more costly, 
which could be an issue for developing countries 
and underprivileged regions. In practice, ordinary 
X-ray photographing remains by far the most 
accessible and most commonly used medical 
imaging tool in craniofacial clinics. The 
technological advancement of 3D computer 
graphics has not been fully exploited in common 
medical practices. This is especially the case for 
orthodontics where the correction of the bony 
structure is usually followed and checked for 
years while the subject grows in age, as one 
would not like to subject the young patients with 
regular high dosage of X-ray radiation. 

In this paper, we present a novel craniofacial 
visualization technique. Although at this stage, it 
remains a distance from being a clinically viable 
alternative, we hope this idea would merit further 
attention and development due to its unique 
advantages over the traditional X-ray based 
approach. We make three contributions in the 
paper. The first is a new craniofacial 
reconstruction technique combining the 
knowledge of computer graphics and computer 
vision. Instead of relying on a CT scan to acquire 
the internal structure of the head, we use only 
three ordinary X-ray photographs (cephalograms) 
together with an ultrasound scan. Compared with 
a full-blown CT scanning system, our technique 



is able to produce a CG skull and the facial skin 
surface incurring only a fraction of the X-ray 
exposure to the subject. The second contribution 
is a new corresponding point matching algorithm 
that is able to identify corresponding feature 
points on different X-rays. In order to produce 
reasonably accurate simulation results, our third 
contribution is an easy-to-implement parameter 
estimation technique used with our finite element 
model (FEM) for the simulation of soft tissue 
deformations. 

Human skulls and faces are of a free-form 
and complex shape. A small number of ordinary 
X-rays do not provide sufficient information for 
their geometry to be derived, owing to the 
penetration nature of X-rays. In order to 
overcome this problem, we stick a number of 
lead markers on the subject’s face and take three 
X-rays photographs. The images of these lead 
markers on the three X-ray photos allow the face 
surface to be reconstructed once the correlated 
vision of the markers is established. The X-ray 
images we take display only the profiles of the 
skull. As they only record the accumulated 
density value of the tissues, not the geometry, 
three profiles curves of skull are far from enough 
for a detailed model to be rebuilt. Therefore, 
acquiring the facial skin surface is essential, not 
only for the evaluation of the appearance of the 
subject, but also for the reconstruction of the 
skull surface. With the subject’s face model, we 
then derive the skull surface by subtracting the 
soft tissue thickness, which can be measured by 
M-ultrasound [2]. The profile curves of the skull, 
obtained by cephalograms, provide ground truth 
for the reconstruction, which is very useful to 
calibrate our calculations. 

The simulation of soft tissue deformations has 
also attracted a great deal of research efforts and 
there exist a number of techniques. Two factors 
are important for the simulation accuracy, which 
are the mathematical model and the material 
parameters pertaining to the mathematical model. 
In this paper, we present a simple, but practical 
method for the estimation of the relevant 
simulation parameters, which are essential for 
enhancing the simulation accuracy. The 
estimated parameters are then used in our double-
layered finite element model for the simulation of 
the soft tissue deformations. 
    This paper is structured as follows.  After a 
brief introduction of the related work in Section 

2, in Section 3 we describe our X-ray based 
craniofacial reconstruction and visualization 
technique including our new point matching 
algorithm. The simulation model and a stiffness 
parameter estimation technique are discussed in 
Section 4. Section 5 introduces the developed 
prototype system. Section 6 explains the 
experiments to study the accuracy and 
effectiveness of the approaches. We discuss the 
limitations of our system and future 
improvements in Section 7. 

2 Related work 

There are many craniofacial measurement and 
analysis methods, each has advantages and 
disadvantages and is appropriate for certain 
applications. In modern medical imaging, 
tomography, such as CT or MRI, represents the 
dominating technology in the reconstruction of 
the cranium with high accuracy [2, 3]. Recently, 
research on 3D craniofacial visualization and 
surgical simulation using both CT and laser 
scanning techniques has gained a popularity, 
which achieves high accuracy in the 
measurement of both soft tissue and bony 
structures [4~6, 23]. Reconstructing a head 
model using CT scans is relatively trivial, which 
can be undertaken with various volumetric 
graphics packages [1]. Because of the complexity 
of the human head structure and tissue 
behaviours, accurate simulation of tissue 
deformations proves very challenging. Many 
techniques have been explored by the research 
community with a varying degree of success. The 
typical deformation models include the finite 
element (FE) simulation [5, 6], mass spring 
systems (MSS) [7] and the Chain-Mail technique 
[8]. Among them, the FE models are likely to 
produce the best simulation accuracy, albeit its 
dependency on parameters setting. The advantage 
of the Chain-Mail algorithm is its ability to 
achieve a very high computational efficiency.    

Although CT imaging produces high accuracy, 
some crucial factors, such as radiation and cost of 
the equipment, are of a concern to its applications. 
Some Japanese and Chinese medical institutes 
have realized this issue and made an effort to 
develop 3D cranium analysis methods from 
multiple orthodontic X-rays [9]. It works by 
manually selecting a set of feature points on the 
X-ray images and calculating the 3D coordinates 



of them resulting in a craniofacial measurement. 
However, this system can only measure the given 
feature points and is unable to build a 3D 
cranium model. Laser scanning and structured 
lights are other effective non-invasive methods in 
the reconstruction of 3D human faces. However, 
they cannot measure the depth of soft tissues. If 
combined with X-rays, both types of the images 
have to be correctly registered, which is another 
tough problem in medical image processing. 

3 Reconstruction of face and skull 

X-ray imaging belongs to the penetrating 
projection imaging model. Each pixel on the 
image plane integrates the density of all the 
voxels through the line of sight. This means that 
an X-ray image does not offer any 3D surface or 
geometry information. Because of this, one is not 
able to derive a full geometric model from only a 
small number of X-ray photos, unless a full CT 
scan is used. But X-rays are very useful to 
identify boundary curves, which are useful for 
calibration as can be seen below. 

Instead of trying to model a skull from X-ray 
photos directly, we endeavour to identify the 
skull surface starting from the face geometry. We 
use three X-ray photos for the purpose of both 
reconstructing a face surface and providing a 
datum for skull modelling [10]. X-rays penetrates 
both soft and hard tissues, but not the metal lead. 
This makes the lead marker points visible on the 
X-ray photos, which are placed on the face of the 
subject. We calculate the 3D position of each 
lead marker using correlated vision. The details 
of our point matching technique are given below. 
    Our technique consists of five steps: (1) 
enhancing images for easy detection of the pixels 
associated with markers. (2) identifying a feature 
region on the X-ray images; (3) matching 
corresponding feature regions on different X-ray 
images; (4) reconstructing a face model based on 
the computed 3D coordinates of all markers; and 
(5) derive the skull surface by subtracting the soft 
tissue thickness that is measured with M-
ultrasound scanning. 

3.1 System structure 

The structure of our craniofacial visualization 
and simulation system is illustrated in Figure 1. 

        
Figure 1 Structure of X-rays based craniofacial 
visualization and surgery simulation system 

To produce the face model for a subject, we 
first paste a number of lead markers on the face 
of the subject, which are fixed on an adhesive 
tape beforehand. In our experiment, the lead 
markers are placed in a 30×15 matrix for half a 
face. We then fix the subject’s head in the 
cephalometer in order to satisfy the requirements 
of the correlated vision. Experiments show that 
the optimal projection orientations are 

00 (frontal), 060 and 090 (lateral) because of the 
least occlusion. We take three X-ray photos from 
these orientations. The X-ray images of 060 and 

090 are used to reconstruct the 3D face model 
because of the least occlusion, and those of 00 and 

090  are used to measure the thickness of soft 
tissue and calibrate and fine tune the M-
ultrasound scanning data. To derive the accurate 
thickness of the soft tissue, the technician marks 
the approximate location of key markers on the 
skin by crayon after the adhesive tape is 
removed. The soft tissue thickness is measured 
using M-ultrasound, probing on the marked 
points on the face. The whole process usually 
takes five to six minutes. It is inevitable that 
errors are likely to be introduced from the manual 
operations. However, the two calibrating X-ray 
images taken at 00 and 090  provide accurate 
profile curves of the skull. This step allows the 
M-ultrasound measurements to be calibrated and 
errors minimized. 

To maintain reconstruction accuracy, the 
maximum horizontal distance between two 
adjacent lead markers is confined to be 5mm, and 
the maximum vertical distance 10mm. Figure 2 



shows a sketch of the X-ray photographing 
process.        

 
Figure 2 X-ray photographing with cephalometer 

3.2 Surface imaging and feature points 
recognition 

Two original X-ray images are shown in Figure 3. 

          
                       (a)                                   (b) 

Figure 3 Original X-ray images pair. (a). 60o 

projection, (b). 90o projection 

After histogram equalization, a following high-
pass filter mask is designed to enhance the 
contrast of the isolated regions (the marker 
regions).  
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Figure 4 gives the processed result. With the 
enhanced image, the feature points can be easily 
segmented by thresholding grey levels. 
 

         
                        (a)                                  (b) 
Figure 4 Image pair after feature points 
enhanced. (a). 60o projection, (b). 90o projection 

To identify the image of a lead feature point on 
an X-ray photo, we designed a simple image 
recognition technique. Although numerous 
pattern recognition techniques exist, ours is 
intuitive and straightforward to use. 

Our feature enhancing treatment above (Figure 
4) has led to the arrival of a binary image, where 
each pixel has either a zero or one value. The 
feature region detection algorithm simply visits 
all pixels on a row-wise basis. A feature region 
on the image is identified if the value changes 
between adjacent pixels. In order to avoid the 
disturbance of image noise, a detected region is 
confirmed only if it spans at least a given number 
of pixels. We assume a region to be at least six 
pixels across in our experiments. 

3.3 Corresponding points matching 

Having detected the feature points, the next task 
is to match the corresponding points on two 
different X-ray photos to compute their 3D 
coordinates. Basically, a point pair should be 
searched along the same epipole line. This is a 
typical computer vision problem and there are 
many matching algorithms available [11~14, 19, 
20], which can be mainly divided into two types: 
grey level based and geometric feature based. 
However, due to the penetrating projection nature 
of X-rays, neither of the two types is effective in 
this problem [15].  

 To tackle this issue, we present a new point 
matching algorithm, which is based on point 
position similarity, as described as follows: 

In a correlated image pair, suppose there are n  
feature points in each image. Scan this image pair 
in the same order. During scanning, when a 
feature point is detected, its 2D coordinates are 
stored in a structure array. Scanning both images 
result in two arrays to be created containing the 
2D coordinates of the feature points. Suppose the 
array for the first image is: 
    )},(),,().......,(),,(),,({ 1321 yxlyxlyxlyxlyxlL nn−  (1)      
and that for the second image is: 

)},(),,().......,(),,(),,({ 1321 yxryxryxryxryxrR nn−  (2)       
    For each feature point in one image, there is 
only one corresponding point in the second 
image regardless of the scanning order. This is a 
permutation problem and there are !n  different 
answers, among which only one is correct. Due 
to occlusion, markers may be missing from the 
images occasionally. But our experience didn’t 



find this poses a problem. The missing points can 
be easily added by the operator manually to make 
the total feature point number the same for both 
left and right images. 
    When the difference of the projection angles is 
small for both correlated images and the object, 
on which the feature points are placed, is largely 
convex, adjacent feature points have the same 
relative positions (or orders) on both images, i.e. 
they satisfy the ordering constraints in local 
region (The geometry meaning of the ordering 
constraints is: if ( , )il x y is a point in the first image 
and ( , )jl x y is another point in the adjacent area 
of ( , )il x y . Their corresponding points in the 
second image are ( , )ir x y and ( , )jr x y  . Suppose it 
exists

i jl lx x≤ ,
i jl ly y≤ , then there will be

i jr rx x≤ , 

i jr ry y≤ ). Place both correlated images in the 
same coordinate system, and let the barycenter of 
feature points in both images coincide. Our 
proposition is that the summation of the 
Euclidean distance between pairs of 
corresponding points becomes minimised if the 
correct matching is found. The proof is given 
briefly in the Appendix. We call this algorithm 
the shortest distance matching based on position 
similarity.  

Thus we have: 
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1ijδ =  suggests the number i  point in array L  
matches the number j  point in array R . ijd stands 
for the Euclidean distance between point i  in 
array L  and point j  in array R . The objective 
function minimises the summation of the 
distances between two matched points. The two 
constraints represent that each point in one image 
should match only one point in the other image. 

We solve this optimization problem by 
evolutionary programming. Using the reciprocal 
of 

, 1
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n

ij ij
i j

d δ
=
∑  to measure the fitness, the algorithm 

can be processed in the following steps: Making 

L  match R in sequence. Firstly we fix the 
sequence of the feature points in array L , change 
the sequence of two feature points in array R  
when there is a mutation operation in this 
position. Then calculate the fitness of each 
individual in new matching result, and eliminate 
the individuals whose fitness is small. The 
algorithm ends when a required tolerance (e.g. 
the difference of fitness) is reached leading to the 
identification of points matching. In the next 
section, we will compute the 3D coordinates of 
these marker points with stereoscopic method 
from which a 3D face model can be generated. 

3.4 Coordinates computation and 3D face 
generation 

Two rigid body transformations should be used 
in this step:   
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lR and ( , , )T

l l lx y z are the rotation matrix and 
translation vector for the left image (60o 
projection). Similarly, rR  and ( , , )T

r r rx y z  are the 
rotation matrix and translation vector for the right 
image (90o projection). lF  ( rF ) stands for the 
focal length of the left (right) image, lt  and rt are 
two unknowns to be determined, which can be 
obtained by minimising d  in (5).  
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Where b stands for the basis of the world 
coordinates system. lr ( rr ) denotes the left (right) 
ray of sight rotated into the world coordinate 
system. Once lt and rt  have arrived, the 3D 
coordinates of the feature point can be calculated 
using (4). The surface model is then trivially 
derived from the marker points. Figure 5 shows 
the 3D face model of the subject in experiment in 
Figure 3. Notice the reconstructed face model 
depends on where the markers are placed. As 
markers are not distributed, the eyes, eyebrows 
and hair cannot be modelled properly. 



Fortunately, they are not necessary for the 
medical measurement we aim to. 

                   
Figure 5 3D face model of a subject in 
experiment 

3.5 3D cranium generation 

From the obtained face model and using the 
thickness data by M-ultrasound scanning, we 
project the feature points inwards to derive the 
geometry of the skull. Generally, the resolution 
of X-rays is much higher than ultrasonograph. 
Therefore, to make the measurement more 
accurate, the M-ultrasonograph data need be 
normalized by the soft tissue depth in lateral and 
frontal X-rays (90o projection and 0o projection) 
first. This calibration process can be computed 
by following formula. 

2 2 2 21 0
, ,

1 0

sin ( ) cos ( )i i
i j i j

i i

D DD d
d d

θ θ= +           (6) 

Where ,i jd is the original depth measured by M-
ultrasonograph in the marker position of i-th row, 
j-th column. θ is the orientation angle in this 
position. 0id , 1id  respectively represent the 
original ultrasound measured depth in the 
position of the first and last markers at the i-th 
row.   0iD , 1iD represent their corresponding depth 
in frontal and lateral X-rays. ,i jD is the normalized 
depth. We assume the soft tissue thickness 
measurements were taken in the normal direction 
to the face skin surface. Figure 6 shows the 3D 
cranium surface model of the subject which is 
calculated from the face model shown in Figure 5. 

             
Figure 6 3D cranium model of the subject shown 
in Figure 5 

4 Surgery simulation and soft tissue 
deformation 

Once the skull and face models are generated, we 
can then implement a surgical simulation system. 
Soft tissue deformation is a complex 
phenomenon and its accurate simulation is of a 
practical significance. Many simulation models 
exist, which endeavour to approximate the soft 
tissue deformations as accurately as possible for 
virtual surgeries. Broadly speaking, there are two 
main physically based approaches, one is based 
on a finite element model (e.g. [5]), and the other 
one based on mass-spring systems [8]. Both FEM 
and MSS have had a varying degree of success in 
the simulation of soft tissue deformations. Since 
an accurate simulation proves extremely 
challenging due to the complex behaviour of 
living human tissues, all current techniques only 
attempt to approximate the behaviours.  
    Our FEM simulation method is not technically 
novel. Our contribution in this section is 
concerned with the formulation of the simulation 
parameters accurately. Here we briefly present 
our simulation model and discuss our supervised 
learning technique for the acquisition of accurate 
simulation parameters. 

Before describing our soft tissue deformation 
and surgery simulation technique, let us first 
introduce some relevant medical background. 
Our study focuses on orthodontics, although the 
developed technique is applicable to other 
craniofacial visualization and simulation 
purposes. In orthodontics there are mainly two 
typical clinic abnormalities. One is known as the 
LeFort I, a kind of abnormality of the maxilla, 
which needs LeFort I pattern osteotomy. The 
other is the abnormality of the jawbone, which 
needs mandible vertical osteotomy. In Figure 7a 
and c, the red broken line illustrates the position 
and direction of bone cutting. Figure 7b and d 
show the operation simulation of these two 
typical osteotomies in our system.  

  

 

      
(a)   (b)  
 



     

 

     
(b)    (d)  

 
Figure 7 Two typical osteotomies and 
corresponding operation simulations. (a). LeFort 
I osteotomy, (b). surgery simulation of LeFort I, 
(c). mandible vertical osteotomy, (d). surgery 
simulation of mandible vertical osteotomy 
 

To model the deformation behaviour of the 
soft tissues subject to surgical manipulations, we 
develop a double-layered non-linear, globally C1 
continuous finite element model for the face and 
cranium. The soft tissue forms the outer layer and 
the bone tissue is represented as the inner layer. It 
uses quadrangle polynomial shape functions 
similar to the modelling paradigm mentioned in 
[5]. Two material parameters, the modulus of 
elasticity (E) and Poisson's ratio ( υ ), are 
important for the simulation accuracy. Material 
properties vary from person to person and vary 
with the conditions of the person concerned, such 
as age, gender, ethnic origin and the environment 
they live in. This variation makes an accurate 
simulation model extremely difficult to come by. 
However, this issue appears to have been 
somewhat neglected in the literature.  

In this research we hypothesize that the 
stiffness parameters are largely invariable in the 
local part of the facial surface for the same 
subject. Clinical practice suggests that facial 
deformities, such as the deformities for 
orthodontics, often require multiple corrective 
surgical interventions. In the following, we 
present an easy-to-implement supervised 
machine learning method to calculate the 
stiffness parameters based on some 
measurements obtained from the first operation. 
Although our hypothesis seems restrictive, it is 
very helpful for the planning and prediction of 
subsequent surgical operations, as multiple 
operations are often necessary in orthodontics. 
Our simulation technique based on the above 
presented cranial reconstruction technique gives 
the surgeon confidence in predicting the resultant 
outcomes with accuracy. 

The training model adopts an iterative strategy, 
as given in (7) below. At the beginning, the 

parameters are initialized with guess values. If 
available, one can use the parameters from other 
patients with similar conditions. After the 
computation of the soft tissue deformations using 
the above-proposed finite element model, the 
results are compared with the measured reference 
data (training data) taken from the operation. The 
errors are used to adjust the estimated parameters 
and this training process goes on until a 
predefined tolerance is satisfied. The training 
formula is given by 
                    1 ( )i i iT t kε ε+ = + −                       (7) 
where 1iε +  is one of the material parameters in 
step 1i +   and iε  is that at the previous iteration; T 
denotes the reference deformation in the training 
data set, which can be acquired from previous 
operations or related database; it  is the current 
calculated deformation; k represents the training 
rate. In our experiments the training process is 
terminated when the difference between it and T 
is less than 0.3 mm. Given the trained parameters, 
we are able to predict the soft tissue deformations 
in our simulation case studies. 

5 Prototype system 

We have developed a prototype craniofacial 
visualization and surgery simulation system 
incorporating the above techniques. In addition, 
we have also implemented some auxiliary 
functions, one of which is a 3D metric 
measurement module. For completeness, here we 
give a brief introduction of this system. 

Craniofacial surgeons often need to take 
measurements which allow them to diagnose, 
evaluate the conditions and appraise the 
outcomes of their surgical manipulations. This 
measurement is also necessary in order to acquire 
the training data (i.e. the measurement of certain 
distances). The derived skull geometry presented 
above makes an accurate measurement possible. 
From a practical point of view, such 
measurements can not be easily obtained without 
a 3D skull model. Without using our technique, 
one has to rely on CT scans to obtain the 
geometry of the cranium. Our X-ray based skull 
reconstruction technique can be used even in less 
well equipped cases. Using this 3D face and skull 
model, we implemented three types of 
measurement items: Euclidean distance, angles 
and geodesic distances which define the shortest 



path between two points on a curved (skull) 
surface. The prototype system is developed with 
C++ and the OpenGL graphics library. Figure 8 
gives a snapshot of the prototype system.  

            
 

Figure 8 Measurement of various distances 

6 Experiments and comparison 

Our system was tested with three experimental 
case studies. The first is to test the accuracy of 
our points matching method and make a 
comparison with two other algorithms which are 
based on epipolar lines [19] and sequence 
matching [20]. Figure 9 shows the original X-
rays pair. We placed 130 markers on the 
subject’s right submaxilary. The comparison 
results are shown in Figure 10. 
 

       
(a) (b) 

Figure 9 Original X-ray images pair. (a). 60o 

projection, (b). 90o projection. 
 

   
(a)                      (b)                       (c) 

Figure 10 Results of corresponding points 
matching based on different algorithms. (a). 3D 
points matched by epipolar lines searching, (b). 
3D points matched by sequence matching 
algorithm, (c). 3D points matched by our method 
 

The 3D points in Figure 10a, based on epipolar 
line searches, show clear matching errors. The 

reason is that the feature points are so dense that 
the error range is beyond the distance between 
two adjacent rows of feature points. In Figure 
10b, as the limited adaptability of sequence 
matching algorithm, a number of points are badly 
mismatched. The result would be good if all 
points satisfy the ordering constraints, which is 
too strict to be practical. The result in Figure 3c, 
which is from our proposed matching method, 
demonstrates the best performance. In 
optimization searching by evolutionary 
programming, the generation scale number 
is 5000

4
)1130(130
≈

− . The time cost in whole process 

is 2.7 seconds and the accuracy of matching is 
93.8%. 

The second experiment is to test the accuracy 
of the 3D reconstruction technique. We compare 
the results with the data measured by a helical 
CT. Table 1 lists the results of some vertical 
items measured by our prototype system 
including Euclidean distance and geodesic 
distances in comparison with the CT imaging 
data. N, Gn, Sto, Sn stand for some facial feature 
points defined by the surgeon. 

Table 1 Measurement errors (mm) 
 

feature 
points 

our 
system CT  difference 

permitted 
error 

tolerance 

N-Gn 120.0 121.3 -1.3 ± 2.7 

N-Sto 86.0 83.3 2.7 ± 2.9 

Sto-Gn 35.42 38.4 -1.98 ± 2.2 

Sn-Go 60.69 60.9 -0.21 ± 2.0 

N-Sn 60.14 60.3 -0.16 ± 2.6 

Sn-Sto 26.33 24.8 1.58 ± 2.6 
 

Table 1 suggests that our cranial 
reconstruction technique and the developed 
system offer good modelling accuracy. All 
measurements are within the required tolerances. 
For certain items, the developed technique is 
almost as accurate as CT scans, which is 
encouraging. However, our technique suffers 
from some limitations. Because it formulates the 
face model using lead markers, it is not suitable 
for regions where lead markers can not be placed, 
for example, the areas covered by hair. The soft 



tissue thickness measured by M-ultrasound is 
another source of inaccuracy. 

The third experiment is designed to investigate 
the effectiveness and precision of the soft tissue 
deformation technique and our parameter 
estimation algorithm. The patient was undergone 
two osteotomy operations, Lefort I and mandible 
vertical osteotomy. In this experiment, the 
reference deformation data of Lefort I was taken, 
once the operation was complete and the 
measured data was used to train the Poisson's 
ratio (υ ) for our double-layered finite element 
model. The trained parameter was then used to 
compute (simulate) the deformations incurred 
from the subsequent mandible vertical osteotomy. 
In our experiments, we fixed the value of the 
modulus of elasticity and only trained the 
Poisson's ratio, and we found one parameter 
sufficed. However, if both parameters need 
training, it is best to train them separately, i.e. to 
fix one while the other is being trained. Iterate 
the process until a predefined termination 
condition is met. 

Using the trained Poisson's ratioυ＝0.463, we 
ran our FEM simulation for the mandible vertical 
osteotomy. Figure 11 demonstrates the 
simulation results.  

 

          
                      (a)                                  (b)    
 

          
                     (c)                                   (d)   
Figure 11 Mandible vertical osteotomy 
simulation. (a). bone tissue before surgery, (b). 
soft tissue before surgery, (c). bone tissue after 
surgery, (d). soft tissue after surgery  
 
Table 2 Deformations in the mandible vertical 

osteotomy  

regions fang teeth jawbone 

Actual 
result 1.25:1 1.13:1 

Simulation   
result 1.27:1 1.21:1 

 
Table 2 shows the comparative results. 

According to the medical convention, the 
deformations are represented as a ratio of the 
bone tissue displacement and the soft tissue 
deformation. The comparison suggests that our 
simulation model coupled with the parameter 
estimation technique is capable of producing 
simulation results of good accuracy when both 
training and testing data are taken from a local 
region (e.g. the fang teeth region in Table 2). 
However, simulation errors may increase if the 
testing area is too far from the area where the 
training data is taken (e.g. the jawbone region). 

 

7 Conclusions 

We have presented an X-rays based craniofacial 
visualization and surgery simulation system 
using only three X-ray photos. Because X-ray 
imaging records the tissue density rather than its 
3D coordinates, a small number of X-ray images 
do not give sufficient information for the 
reconstruction of the cranium of a subject. Unlike 
the traditional CT based approach, where the 
geometry is derived by evaluating the densities of 
the voxels, our first step is to formulate the face 
geometry using computer vision techniques. To 
reconstruct the skull, we measure the soft tissue 
thickness using M-ultrasound scanning data 
calibrated by lateral X-ray photos and subtract 
the tissue thickness from the face model.  

In the step of corresponding points matching, 
we have developed a new algorithm by 
considering the similarity of the position 
sequences of the feature points. Our 
experimenting results show that our algorithm is 
able to overcome the difficulties of the existing 
techniques encountered with X-ray images.  

The derived 3D geometry of the skull is 
valuable both for the simulation of soft tissue 
deformations and for the accurate measurement 
and evaluation of surgical results. Based on the 
obtained geometry of the face and the skull of a 
subject, we have implemented a craniofacial 



simulation technique using a double-layered 
finite element model for the computation of soft 
tissue deformations. In particular, we have 
proposed a simple yet effective algorithm for the 
estimation of the material parameters, including 
Young’s modulus and Poisson's ratio. This has 
proven crucial to the accuracy of the simulation. 

Compared with the CT based craniofacial 
visualization approach, the primary merits of our 
technique are low radiation and low cost. It uses 
only ordinary medical equipment and therefore 
can be easily adopted in poorer and 
underprivileged countries and remote regions. 
We have conducted two surgical experiments, 
Lefort I and mandible vertical osteotomy. 
Practical measurements have shown that our 
craniofacial reconstruction technique produces 
small geometric errors, well within the required 
tolerance. The experiments also verified that our 
simulation technique, together with the parameter 
estimation algorithm, was of good simulation 
accuracy. 

However, our development is at an early stage 
and has a number of limitations. The most 
obvious is that our current method for placing the 
lead markers is quite awkward and user-
unfriendly. Nevertheless, our objective of this 
research is mainly to prove the research concept. 
The second is that it is not suitable for the areas 
that cannot be well represented by the lead 
markers, such as the places covered with hair. 
Therefore, it should not be considered to replace 
the CT system. The third disadvantage is that the 
simulation error may increase if the testing area 
is too far from the area where the training data is 
taken. But this is true for other existing 
simulation techniques as well.  

The feedback from the doctors who 
participated in the experiments believed our 
method had unique advantages and was worth of 
further development. In future work, we will 
devise a new easy-to-use marker placement 
method to cover the patient face. Our idea is to 
design a special face mask to let the markers 
touch the face automatically, which can also 
guide the ultrasound scan with accurate 
placement of the probe. Using the developed 
prototype system, we also plan to investigate the 
relationship of the stiffness parameter values with 
human age, race, gender, ethnic origins and some 
other related factors. 
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Appendix 
  
In Section 3.4 we presented a proposition, which 
says that under the ordering constraint the 
summation of the Euclidean distance between 
pairs of corresponding points minimises if the 
correct matching is found.  

Denote the known features on the image pair as 
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Therefore the shortest distance matching 
algorithm is described as: 
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, subject to the ordering constraint, where pp ′,  
are denoted as the permutations of L  
and R respectively. 

We need to prove that when the correct 
matching is found, the summation of the 
distances between matched feature point pairs is 
the minimum. 

     Proof: Assume that for the shortest distance 
solution, there exist two points A and B, whose 
projections on L  and R  are mismatched. For the 
correct match, one has 
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for the mismatching. 
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are four distances as follows, 
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1 2 2 ( 0)d d ε ε+ + > , and the other 
is cdddd =+=+ 4321 . For the 1st one, one can 
yield 2

2
2
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2
3 dddd +>+ . Thus, let’s consider the 2nd 

one. 
    For a fixed length c with two 
variables yxc += , let’s consider 22 yxs += . This 
leads to 22 22 xcxcs +−= . For this quadric 
function, one can observe that when x is 
becoming large or small (y is becoming small or 
large), s is becoming large. This implies, 
         2 2
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conclusion. This implies that  
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It is clear that the solution is not a minimal 
solution. This conflicts with our assumption. We 
therefore conclude our proposition. 
    End. 
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