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Geometric Capacity Provisioning for
Wavelength-Switched WDM Networks

Li-Wei Chen, Eytan Modiano

Abstract— In this paper, we use an asymptotic analy-
sis similar to the sphere-packing argument in the proof of
Shannon’s channel capacity theorem to derive optimal pro-
visioning requirements for networks with both static and
dynamic provisioning. We consider anN -user shared-link
model whereWs wavelengths are statically assigned to each
user, and a common pool ofWd wavelengths are available to
all users. We derive the minimum values ofWs and Wd re-
quired to achieve asymptotically non-blocking performance
as the number of usersN becomes large. We also show that
it is always optimal to statically provision at least enough
wavelengths to support the mean of the traffic.

I. I NTRODUCTION

I N GENERAL , an optical network can consist of a
large number of nodes connected in some arbitrary

fashion (see Figure 1) and can present the network archi-
tect with a complex provisioning problem over multiple
links. For simplicity, in this paper we will focus on provi-
sioning a single shared link on a backbone network. Fig-
ure 1 also shows a model for the shared colored link in
the arbitrary network. We consider provisioning for traf-
fic traveling from left to right along the link. Each wave-
length on the link can be used to support one lightpath
from one of the incoming fibers on the left side of the link
to one of the outgoing fibers on the right side of the link.

Broadly speaking, wavelength provisioning can be
done in one of two ways. One option is tostaticallypro-
vision a wavelength by hard-wiring the nodes at the ends
of the link to always route the wavelength from a given
input fiber to a given output fiber. The advantage to this
is that the cost of the hardware required to support static
provisioning is relatively low: no switching capability or
intelligent decision-making ability is required. The down-
side is a lack of flexibility in using that wavelength – even
if the wavelength is not needed to support a lightpath be-
tween the assigned input and output fibers, it cannot be
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Fig. 1. An example of a mesh optical network consisting of numerous
nodes and links, followed by a shared-link model based on the colored
link. The dotted lines denote different users of the link. Since each
pair of input-output fibers comprises a different user, and there are 4
input fibers and 4 output fibers, there are a total of4 · 4 = 16 users in
this example.

assigned to support a lightpath between any other pair of
fibers.

This shortcoming can be overcome by usingdynamic
provisioning. A dynamically provisioned wavelength is
switched at the nodes on both sides of the link, allow-
ing it to be dynamically assigned to support a lightpath
between any source and destination fibers. Furthermore,
this assignment can change over time as traffic demands
change. This obviously imparts a great deal of additional
flexibility. The downside is that the added switching and
processing hardware makes it more expensive to dynami-
cally provision wavelengths.

There has been much investigation of both statically
provisioned and dynamically provisioned systems in the
literature [1], [2], [3], [4]. Such approaches are well-
suited for cases where either the traffic is known a priori
and can be statically provisioned, or is extremely unpre-
dictable and needs to be dynamically provisioned. How-
ever, in practice, due to statistical multiplexing it is com-
mon to see traffic demands characterized by a large mean
and a small variance around the mean. A hybrid system is
well suited to such a scenario. In a hybrid system, a suffi-
cient number of wavelengths are statically provisioned to
support the majority of the traffic. Then, on top of this,
a smaller number of wavelengths are dynamically provi-
sioned to support the inevitable variation in the realized
traffic. Such an approach takes advantage of the relative
predicability of the traffic by cheaply provisioning the ma-
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jority of the wavelengths, but retains sufficient flexibility
through the minority of dynamic wavelengths that signif-
icant wavelength overprovisioning is not necessary.

After describing the system model used in this pa-
per, we will use the asymptotic analysis approach from
information theory incorporated in the proof of Shan-
non’s channel capacity theorem [5] to analyze hybrid net-
works: we allow the number of users to become large,
and consider the minimum provisioning in static and dy-
namic wavelengths necessary to achieve nonblocking per-
formance (i.e., to guarantee that the probability of any call
in the snapshot being blocked goes to zero). We will show
that it is always optimal to statically provision enough
wavelengths to support the traffic mean. We also fully
characterize the optimal provisioning strategy for achiev-
ing non-blocking performance with minimal wavelength
provisioning.

A. System Model

In the shared link context, we can consider each
incoming-outgoing pair of fibers to be a differentuserof
the link. Each lightpath request (which we will hence-
forth term acall) can therefore be thought of as belonging
to the user corresponding to the incoming-outgoing fiber
pair that it uses. We can similarly associate each static
wavelength with the corresponding user. Under these def-
initions, a call belonging to a given user cannot use a static
wavelength belonging to a different user – it must either
use a static wavelength belonging to its own user, or em-
ploy a dynamic wavelength.

Figure 2 gives a flowchart of the decision process for
admitting a call. When a user requests a new call setup,
the link checks to see if a static wavelength for that user is
free. If there is a free static wavelength, it is used. If not,
then the link checks to see if any of the shared dynamic
wavelengths are free – if so, then a dynamic wavelength
is used. If not, then no resources are available to support
the call, and it is blocked.

There have been several approaches developed in the
literature for blocking probability analysis of such sys-
tems under Poisson traffic models [6], including the
Equivalent Random Traffic (ERT) model [7], [8], [9] and
the Hayward approximation [10]. These approximations,
while often able to produce good numerical approxima-
tions of blocking probability, are purely numerical in na-
ture and do not provide good intuition for guiding the
dimensioning of the wavelengths. Furthermore, they as-
sume that the dynamic wavelengths must be individually
switched, and do not consider waveband switching.

In this paper, we adopt a snapshot traffic model that
leads to closed-form asymptotic analysis and develop

Fig. 2. Decision process for wavelength assignment for a new call
arrival. A new call first tries to use a static wavelength if it is available.
If not, it tries to use a dynamic wavelength. If again none are available,
then it is blocked.

guidelines for efficient dimensioning of hybrid networks.
We consider examining a “snapshot” of the traffic demand
at some instant in time. The snapshot is composed of the
vectorc = [c1, . . . , cN ], whereci is the number of calls
that useri has at the instant of the snapshot, andN is the
total number of users.

We model each variableci as a Gaussian random vari-
able with meanµi and varianceσ2

i . This is reason-
able since each “user” actually consists of a collection of
source-destination pairs in the larger network that all use
the link from the same source fiber to the same destina-
tion fiber. In this paper, we will assume that each user
has the same meanµ and varianceσ2; the results are ex-
tensible to generalµi andσi but the extension is beyond
the scope of this paper (see [11]). Although the traffic for
each individual source-destination pair for the user may
have some arbitrary distribution, as long as the distribu-
tions are well-behaved, the sum of each traffic stream will
appear Gaussian by the Central Limit Theorem.

As a special case, consider the common model of
Poisson arrivals and exponential holding times for calls.
Then the number of calls that would have entered a non-
blocking system at any instant in time is given by the
stationary distribution of anM/M/∞ queue – namely,
Poisson with intensity equal to the loadρ in Erlangs. For
a heavy load, this distribution is well approximated by a
Gaussian random variable with meanρ and varianceρ.

II. WAVELENGTH-GRANULARITY SWITCHING

In this section, we consider a shared link, and assume
that there areN users that are the source of calls on the
link. Each user is statically provisionedWs wavelengths
for useexclusivelyby that user. In addition to this static
provisioning, we will also provide a total ofWd dynam-
ically switched wavelengths. These wavelengths can be
shared by any of theN users.

As previously described, we will use a snapshot model
of traffic. The traffic is given by a vectorc = [c1, . . . , cN ],
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where eachci is independent and identically distributed
asN(µ, σ2). We assume that the meanµ is significantly
large relative toσ that the probability of “negative traffic”
(a physical impossibility) is low, and therefore does not
present a significant modeling concern. We will primarily
be concerned with a special blocking event that we call
overflow. An overflow event occurs when there are insuf-
ficient resources to support all calls in the snapshot and at
least one call is blocked. We will call the probability of
this event theoverflow probability.

From Figure 2, we see that an overflow event occurs
if the total number of calls exceeds the ability of the sta-
tic and dynamic wavelengths to support. This can be ex-
pressed mathematically as

N∑

i=1

max {ci −Ws , 0} > Wd (1)

wheremax {ci −Ws , 0} is the amount of traffic from
each user that exceeds the static provisioning; if the to-
tal amount of excess from each user exceeds the available
pool of shared dynamic wavelengths, a blocking event oc-
curs.

If we consider theN -dimensional vector space occu-
pied byc, the constraint given by (1) represents a collec-
tion of hyperplanes bounding the admissible traffic region:

ci ≤ Ws + Wd

ci + cj ≤ 2Ws + Wd , i 6= j

ci + cj + ck ≤ 3Ws + Wd , i 6= j 6= k

...

Each constraint reflect the fact that the sum of the traffic
from any subset of users clearly cannot exceed the sum
of the static provisioning for those users plus the entire
dynamic provisioning available. Note that there are a to-
tal of N sets of constraints, where thenth set consists of
C(N,n) = N !

(N−i)!n! equations, each involving the sum of
n elements of the traffic vectorc. If the traffic snapshot
c falls within the region defined by the hyperplanes, all
calls are admissible; otherwise, an overflow event occurs.
The bolded lines in Figure 3 show the admissible region
for N = 2 in two dimensions.

A. Asymptotic Analysis

We will consider the case where the number of usersN
becomes large, and use the law of large numbers to help
us draw some conclusions. We can rewrite the call vector
in the form

c = µ · 1 + c′

Fig. 3. The admissible traffic region, in two dimensions, forN = 2.
Three lines form the boundary constraints represented by (1). There
are two lines each associated with a single element of the call vector
c, and one line associated with both elements ofc. The traffic sphere
must be entirely contained within this admissible region for the link to
be asymptotically non-blocking.

where 1 is the length-N all-ones vector, andc′ ∼
N(0, σ21) is a zero-mean Gaussian random vector with
i.i.d. components. Conceptually, we can visualize the
random traffic vector as a random vectorc′ centered at
µ1. The length of this random vector is given by

∥∥c′
∥∥ =

√√√√
N∑

n=1

c2
i

We will use an approach very similar to the sphere
packing argument used in the proof of Shannon’s channel
capacity theorem in information theory [5]. We will show
that asymptotically as the number of users becomes large,
the traffic vector falls onto a sphere centered at the mean,
and the provisioning becomes a problem of choosing the
appropriate number of static and dynamic wavelengths so
that this traffic sphere is completely contained within the
admissible region.

From the law of large numbers, we know that

1
N

N∑

n=1

c2
i → σ2

asN →∞. This implies that asymptotically, as the num-
ber of users becomes large, the call vectorc becomes con-
centrated on a sphere of radius

√
Nσ centered at the mean

µ1. Therefore, in order for the overflow probability to
converge to zero, a necessary and sufficient condition is
that the hyperplanes described by (1) enclose the sphere
entirely. This is illustrated in Figure 3.

B. Minimum Distance Constraints

Next, we will derive necessary and sufficient condi-
tions for the admissible traffic region to enclose the traffic
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sphere. Our goal is to ensure that we provisionWs and
Wd such that the minimum distance from the center of the
traffic sphere to the boundary of the admissible region is
at least the radius of the sphere, therefore ensuring that all
the traffic will fall within the admissible region.

Due to the identical distribution of the traffic for each
user, the mean pointµ1 will be equidistant from all planes
whose description involves the same number of elements
of c. We define adistance functionf(n) such thatf(n)
is the minimum distance from the meanµ1 to any hyper-
plane whose description involvesn components ofc.

Lemma 1:The distance functionf(n) from the traffic
mean to a hyperplane involvingn elements of the traffic
vectorc is given by

f(n) =
√

n

(
Ws +

Wd

n
− µ

)
, n = 1, . . . , N (2)

Proof: The distance can be calculated using basic
geometric principles and is omitted for brevity.

We define theminimum boundary distanceto be

Fmin = min
n=1,...,N

f(n)

A necessary and sufficient condition for the overflow
probability to go to zero asymptotically with the number
of users is

Fmin ≥
√

Nσ

We would like to determine the indexn such thatf(n)
is minimized. Unfortunately, this value ofn turns out to
depend on the choice of provisioningWs. Let us consider
the derivative of the distance functionf ′(n):

f ′(n) =
1

2
√

n

(
Ws − Wd

n
− µ

)

We can divideWs into three regimes of interest,
corresponding to different ranges of values forWs and
Wd, and characterizef(n) in each of these regions:

Regime 1:If Ws ≤ µ:

In this region,f ′(n) < 0 for all n. This implies thatf(n)
is a decreasing function ofn, andFmin = f(N), giving a
minimum distance of

Fmin =
√

N

(
Ws +

Wd

N
− µ

)

Regime 2:If µ < Ws ≤ µ + Wd:

In this region,f ′(n) starts out negative and ends up pos-
itive over1 ≤ n ≤ N . This implies thatf(n) is convex

and has a minimum. Neglecting integrality concerns, this
minimum occurs whenf ′(n) = 0, or

n∗ =
Wd

Ws − µ

ThereforeFmin = f(n∗) in this regime. Substituting the
appropriate values, it can be shown that the minimum dis-
tance is given by

Fmin = 2
√

Wd(Ws − µ)

Regime 3:If Ws > µ + Wd:

In this region,f ′(n) > 0 for all n. This implies thatf(n)
is an increasing function ofn, andFmin = f(1), giving a
minimum distance of

Fmin = Ws + Wd − µ

C. Optimal Provisioning

In the preceding section, we derived the minimum dis-
tance criteria for the hybrid system. Given a fixed num-
ber of statically allocated wavelengthsWs, we can use the
equationFmin ≥

√
Nσ to calculate the minimum num-

ber of dynamic wavelengthsWd to achieve asymptotically
non-overflow performance. We can also draw a few addi-
tional conclusions about provisioning hybrid systems.

Theorem 1:A minimum ofµ static wavelengths should
always be provisioned per user.

Proof: For Ws ≤ µ, we know from Case 1 above
that the minimum distance constraint is

Fmin =
√

N

(
Ws +

Wd

N
− µ

)
≥

√
Nσ

⇒ Wtot = NWs + Wd ≥ (µ + σ)N

Note that the total number of wavelengthsWtot =
NWs + Wd is independent ofWs andWd in this regime,
suggesting that the same total number of wavelengths are
required regardless of the partitioning between static and
dynamic wavelengths. Since static wavelengths are less
expensive to provision than dynamic wavelengths, this
shows that there is never any reason to provision less than
Ws = µ wavelengths.

An interesting corollary to this theorem follows from
the observation that the case whereWs = 0 (i.e. all
wavelengths are dynamic) also falls in this regime (i.e.
Regime 1). Since fully dynamic provisioning is obviously
the least-constrained version of this system, we can use it
as a bound on the minimum number of wavelengths re-
quired byany asymptotically overflow-free system:
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Wtot ≥ (µ + σ)N

We can also consider a system that is fully static, with
no dynamic provisioning. This is the most inflexible
wavelength partitioning, and provides us with an upper
bound on the number of wavelengths required by any hy-
brid system.

Theorem 2:For a fully static system with no dynamic
provisioning, the minimum number of wavelengths re-
quired is given by

Wtot = (µ + σ)N +
(√

N − 1
)

Nσ

Proof: Let Wd = 0. Then, for overflow-free opera-
tion, we obviously needWs > µ. This puts us in Regime
3 whereWs > µ+Wd, and the minimum distance condi-
tion gives us

Fmin = Ws + Wd − µ >
√

Nσ

⇒ Wtot = (µ + σ)N +
(√

N − 1
)

Nσ

Note that this exceeds the lower bound on the mini-
mum number of wavelengths by(

√
N − 1)Nσ. We can

therefore regard this quantity as themaximum switch-
ing gain that we can achieve in the hybrid system. This
gain is measured in the maximum number of wavelengths
that could be saved if all wavelengths were dynamically
switched.

Corollary: Combining the upper and lower bounds, we
observe that for efficient overflow-free operation, the total
number of wavelengths required by any hybrid system is
bounded by

(µ + σ)N ≤ Wtot ≤ (µ + σ)N + (
√

N − 1)Nσ

D. Numerical Example

Simulations were conducted to verify the accuracy of
the provisioning results derived. Figure 4 verifies the re-
sults of the preceding discussion for the case ofµ = 100
andσ = 10. The rapidly descending curve shows that if
the theoretical minimum ofWtot = (µ+σ)N wavelengths
are provisioned withWs = µ, then asN increases, the
overflow probability drops off quickly and eventually the
system becomes asymptotically non-blocking. The other
two curves show that if less thanWtot wavelengths are
provisioned, the overflow probability no longer converges
to zero as the number of users increases.

Note also that the convergence occurs fairly rapidly
if the Wtot wavelengths calculated in the preceding sec-
tions are provisioned. In a system with just 30 users, the
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Fig. 4. Curves show decrease in overflow probability with increas-
ing number of usersN . The curve with the circles shows a link pro-
visioned with the theoretical minimum number of wavelengthsWtot

needed to achieve asymptotically non-overflowing operation. Note
that if fewer thanWtot wavelengths are provisioned, the overflow
probability no longer converges to zero as the number of users in-
creases.

overflow probability has already decreased to the order of
10−5. Since the number of users is equal to the number
of input-output fiber pairs, this corresponds to a link with
as few as 5 input fibers and 6 output fibers, for example.
Therefore, the results are useful in designing for good net-
work performance even whenN is finite and small.
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