A kernel extension to handle missing data

Guillermo Nebot-Troyano and Lis A. Belanche-Miioz

Abstract An extension for univariate kernels that deals with missialyes is pro-
posed. These extended kernels are shown to be valid Meroezlkeind can adapt
to many types of variables, such as categorical or contiswibloe proposed kernels
are tested against standard RBF kernels in a variety of leaithproblems show-
ing different amounts of missing values and variable ty@as.experimental results
are very satisfactory, because they usually yield slighmtch better improvements
over those achieved with standard methods.

1 Introduction

In the last few yearkernel methodbave become a very popular topic of research.
One of the most relevant problems in kernel-based learniaghines, in terms of
practical applications, is thehoiceof an appropriate kernel. This kernel should be a
measure that adequately captures meaningful relatiofgeiddta. A proper kernel
choice should result in more adequate learning machings Jikely to overfit and
thus showing a better generalization ability.

Real-world data come from many different sources, desdiiyamixtures of nu-
meric and qualitative variables. These variables may requompletely different
treatments and are traditionally handled frgparingthe data using a number of
coding methodsThese codings may entail an unknown change in input digtoib
or an increase in dimension, increasing the likelihood ddrfitting and also the
training or optimization time. Moreover, and most impottgrsometimes the data
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sets exhibitmissing valuedy diverse causes. These missing values are always a
serious problem because they require a preprocessingf(@ittoding or an impu-
tation) of the dataset in order to be able to use a classicatke

In this work we present a method for dealing with missing galthat rigorously
extendsanykernel to one that copes with missing information and withba need
of any coding or imputation mechanism. The method can mag&eidgistributional
or probabilistic assumptions about the variables. In theméncountered situation
that this knowledge is not available, we advocate for the afssamplestatistics
(very much like in N&ve Bayes methods), in the form of density estimation or fre-
quentist probabilities; contrary to other methods, no pextaic knowledge is re-
quired. In addition, the proposed kernels can accept mid types, a common
situation in real-world data. We present successful erpantal results against stan-
dard RBF kernels in a variety of benchmark problems showiffigrdnt amounts of
missing values and different variable types.

2 Preliminaries

The Support Vector Machine (SVM) was developed by Vapnik laisccoworkers,
initially for classification problems and has won great gagty as a tool for the
identification of nonlinear systems [16]. A nice introdectito SVMs and kernel
machines is [5]. A key idea in kernel machines is that ofkbmel but the SVM

formulation does not include criteria to select a kernekfion. A standard result
for identifying such functions can be derived from Merceesult [10]:

Theorem 1. A continuous and symmetric function K7 x s# — R is a kernel if it
satisfies the condition:

K(x,y)g(x)g(y)dxdy>0
/W _, Kx¥)9(x)g(y)dxdy=>
for any function g such that,, (g(x))%dx <

If the functionK gives rise to a positive integral operator, its evaluatiam loe ex-
pressed as an absolutely and uniformly convergent serngte (@r infinite), almost
everywhere [10]. Except for specific cases, it may not be gmaskieck whether this
condition is satisfied. For this reason we show anotheryvatgnt, definition:

Theorem 2. The function K 27 x # — R is a kernel if and only if for any finite
subset{x1,%2,...,Xn} € # the associated kernel matrix,i, = (kij), where k =
K(xi,X;j) is a symmetric positive semidefinite (PSD) matrix.

This condition is in general easier to check than Mercenglitidon. Among the
most widely used and well-known kernels we find the PolynbkeanelK (u,v) =
(< u,v> +y)d with y> 0 c R andd € N parameters (where, > denotes scalar
product) and the Gaussian kernel, one of a number of kernelsikas Radial Basis
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Function (RBF) kerneld{(u,v) = exqf%), with o € R a parameter. This one
is by far the most popular choice of kernel in SVMs; it alsduiies the polynomial
kernel as a limiting case.

Kernel functions can be conceptually regarded as simjléwibctions [14], al-
though not all kernels fulfill all the properties for a sinitg (e.g. boundedness).
The work of Gower in general similarity measures [7] showsie@artial coef-
ficients of similarity for three different types of featurddichotomous (Binary),
Qualitative (Categoric) and Quantitative (Continuous &nscrete) features, that
are shown to produce PSD matrices; these functions can loenseen as kernels.
For any two observations,x; € # to be compared on the basis of a featkra
score § is built: first & is defined as 0 when the comparisorxgik; cannot be
performed on the basis of featutéor some reason (e.g., by the presence of missing
values);gjk is 1 when such comparison is meaningful. The coefficientroflarity
betweerx;, x; is defined as the average score over all the partial competiso

Y1 Gk
The scores;j are defined as follows [7]:
i) For Dichotomous (binary) featurehe presence of the feature is denotedtby

and its absence by; negative matches (i.e., absence - absence) are not consid-
ered meaningful. When there are no missing values for fe&ture

Values
observatiorx; [+ + — —
observatiorkj|+ — + —
Sijk 1000
Gk 1110

ii) For Qualitative featuresLet ., = 1 when the argument is true and 0 otherwise;
thensijk = Lix,—x}-

iii) For Quantitative featuressjx = 1 — , whereRy is therangeof featurek
(the difference between the maximum and minimum attaineddiees).

Xik —Xikl

Gower proves thaif there are no missing valugthe matrixS= (Sj) is PSD.
This property may be lost when there are. An example will sefflet. 2" denote
a missing value and consider three observations with foantjative features in
1,5 (Re=4),x1=(1,2,3,1),x2 = (1,3,3,.2") andxs = (1,3,3,5). In this case,

121
s=|1 11|, de(t§9=---<0
Bl S =-2302

16

and therefore&Sis not PSD; but if we replac&” by anyprecise value ir1,5], then
the matrixSis certainly PSD.
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3 Main results

Missing information is an old issue in statistical analyi§i Missing values are
very common in Medicine and Engineering, where many vaemlbme from on-
line sensors or device measurements, or are simply too/dodtle measured at the
same rate as other variables. In this section we presentmoagh that allows the
extensiorof any kernel to one that is defined even in the presence ofngissl-
ues. Moreover, the value returned by the kernels in thisadn can be explained in
meaningful terms. There are two basic ways of dealing witbsing data, byom-
pletingthe data description in a (hopefully) optimal way, orétendinghe meth-
ods to work with incomplete descriptions. Our way to creamkls with missing
values follows the latter idea and offers some importanaathges:

1. Any kernelK can be extended to adapt to a dataset with missing values;

2. No preprocessing of the missing values is needed; weeckeatels by calculat-
ing directly the values oK (x, .2") andK (2", Z") whereZ" represents a missing
value —behaving as d@ncomparableelement w.r.t. any ordering relation— with-
out the need to estimate the value®f,

3. There is no need of removing information because of theingsvalues; i.e., no
information is lost;

4. Missing values are allowed both in training atedtexamples (which is quite
difficult with traditional imputation methods).

Lemmal. LetsZ any set, X, X2, ...,Xy € 2 and let f: 77 x 7# — R a symmetrical
function. Let Ac .#n.n @ PSD matrix where A= [a;] with &; = f(x;,X;). Leto be

any permutation of x...,Xn, i.€., 0(X1,...,Xn) = (Xg(1);--» Xg(n)); then the matrix
A7 = [af] with af = f(Xg(i), Xo(j)) is PSD.

Proof. Let A andA° be the matrices of the lemma and tetany permutation of
X1, X, that'is, o (X1, ..., %) = (Xg(1); s Xo(n)). IN order forA? to be PSD, we
must prove that'’zc R" z' Az > 0, providedvy ¢ R" y" Ay > 0.

Then 0<y'Ay=o(y")o(A)o(y) = a(y")Aa(y), wherea(y) = (Yo(1): - Yo(n))
ando(A) = [o(aij)], with o(aij) = f(X(i). Xo(j)) = a7 I.€., 0(A) = A. Now we
know thatVy € R", a(y")A%a(y) > 0, that is the same thatz € R" z'Az> 0,
because is a permutation function. O

This result is important and useful because if we prove tma&t matrix, that
depends on a symmetrical function, is PSD for an arrangeofehte dataset, then
the matrix is PSD for any rearrangement (reordering of theeolations) of it.

Theorem 3. Let K be a kernel in a se#” (e.g. a similarity function) and P a prob-
ability density function in7Z. Then the function

Keey), ifxy#2";
R(xy) = [ POY)K(x,y)dy, ifx# 2 andy=2;
) e POOK(x y)dx, ifx=2 andy+# 2;

[ P(X) [ Py)K(x,y)dydx ifx=y=2"
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is a kernel inZ U{2"}.
Proof. Developed in the Appendix, for clarity.0

Theorem 4. Let K be a kernel insZ (e.g. a similarity function) and P a probability
mass function iyZ. Then the function

K(xy), ifxy#2";
R(xy) = Yyenr PYK(XY), ifx# 2 andy= 2;
’ Yxenr POOK(XY), ifx= 2 andy+# 2

Sxen PX) Syer PYK(XY), ifx=y=2
is a kernel inzZ U{2"}.

Proof. It is analogous to that of Theorem 3, changing the integnalsummations,
since the summation has also the linearity property.

3.1 Motivation of the extension

Given a two-place symmetric functidf: # x 2 — R, we aim to find that func-
tion k that is the minimizer of

E[K] :/Jﬁ% ”(K(z)—K(z,x))zp(z,x) dx dz

whose solution ix (2) = [, K(z,x)p(x) dx, by making use that, in the present
situation,p(z x) = p(z) p(x). Therefore we define the kernel extenskofe, 27) =
K(z). The value of the kernel wheboth values are missing can be explained as
follows. Focusing on one of the missing values, it certaimhs to be one of the
possible values, with some probability. Fixing it to, saythen the kernel has to be
K(z, ") by the previous result. The overall expression is theretfoeexpectation
of K(z,.2") seen as a function af

3.2 Nonparametric Kernel Density estimation

If the densities or mass probability functiofiéx) are not known they can be esti-
mated using the data set by applying non-parametric meflooéstimation. One of
these methods is the Parzen windows technique [11] or marergky kernel den-
sity estimatioKDE). A challenging task in the general case, in the unatarcase
the KDE approach is to considey, ..., X, an i.i.d. sample of an absolutely continu-
ous random variabl¥ with unknown densityf (x), and define the empirical distri-
bution function ag(x) ==ty , [x<x}» Which is an estimator of the true (cumu-
lative) distribution functiorf (x) of X. Knowing that the density (x) is the deriva-
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tive of the distribution functiofF we expressgh(x) = (2h) ~L[F,(x+h) — Fy(x—h)],

for a smallh > 0. This is equivalent to the proportion of points in the intdr
(x—h,x+ h) divided byh. It is common that the amount of smoothing depends
on the number of data points; then we have:

~ 11 X — X
) ==y — 2
=35 o () @
A particular choice for the weight function (also called Bar window oruni-
form kerne) is ¢(z) = %]I{mgl}. Generally,¢ andh must satisfy certain conditions

of regularity, such tha is bounded and absolutely integrableRrand integrates
tol andnlimhn = 0. Usually,¢(z) > 0 and¢ (z) = ¢ (—z). Among the most widely

used kernels we also find the Gaussian or the Epanechnikoelkd6]. If the band-
width h is very small then the estimation of the density functionetegyates to

a collection ofn spikes centered at the data pointshlfs too big then the esti-
mation is oversmoothed and tends to the uniform distrilouté typical choice is

h = hon~Y/2, wherehy is a free parameter to be determined. This estimation is con-
sistent and asymptotically normal [13]. In this work we use bandwidth selection
method using pilot estimation of derivatives, describefl5i.

3.3 Extended kernel using uniform KDE

We illustrate the previous ideas by coupling the extendediae of the kernels
developed in section 2 with KDE. Léi € R be any bounded subset and denote

b= sup|x—y| anda= inf |x—y]. According to Theorem 3, for any finite subset
x,yeH xyeH

{Xl,Xz,...,Xn} S H,

1Pl X, Xj # 2,

b—a
01(%), if xi # 2 andx; = 2,
Ka(%i. %)) = 4 g1(Xj), if 5 = 2" andxj # 2;
Gy, if i =x; =2 andi # |;
1 if i =xj=2%2 andi=j

is a valid PSD kernel, where

01(2) :/:: f(x) (1—H> dx:/jon—lh_n ¢ (X;]Xi) (1—|;(_:1> dx
e () (5 e g L (5o
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Lo 72h(b_bz_+;i_a) , ifz>x+h;
= oo 2, 0@ with ai(z) = § PO, ity —h<z<x4hy
= 72'”%*1;2*3) , if z<x —h

dG f(2)01(2)d S mln - 2)dz—
an 1—/ 2)q1(2)dz= o 21 —hng z=

with
4h?(b—xj+x—a) : .
12(bfg)7:1%7(xi 7;j)372h(4h2+3(xi7xj)2) ff Xil he XJ: o . .
e ;X —h<x+h<xj+h;
By = { 4EG-a) f x; = x;
— 5 if Xj+h<x—h

3.4 Extended kernel for categoric features

Consider now a categoric feature that takes values in thte 8et? = {v1,...,v }.
An extended kernel can be built around Gower’s result folitateve features (sec-
tion 2). The probability mass functioh for this type of feature can be estimated
in the usual way from the data set by the frequency of everyatitgcamong the
values that are non-missing for this feature. Then, foviall € 7,

H{Vi:Vj}7 if Vi,VJ' 7é Z ;

92(vi), ifvi#2 andvj=2"
Ko(vi,vj) =< ga(vj), ifvi=2 andvj# 2;

Gy, if vi =vj =2 andi # j;

1 ifVi:vjf(%’andifj

wheregy(2) Zf Vi)ljy—z = f(2) and Gz = Zf vi)?, is a PSD kernel i’ U{2'}.

3.5 Extended Heterogeneous Kernel

We show now how to create a full kernel i = 774 x ... x 7% from a collection
of extendedpartial kernelsk; defined in the set§ 4 }i—1-.
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Theorem 5. If {K;}i—1-t are kernels defined in the setf , the function:

t
H o) =1 3 Kiy) @

is a kernel in the product spac#”’.

Proof. The sum oft > 0 PSD matrices is a PSD matrix; take any neal 0 and a
PSD matrixA, thenrA is again PSD (in the present case; 1/t). O

We will refer to (3) as arextended Heterogeneous KerwoelEHK.

3.6 Adding flexibility to an EHK

Typically kernels have parameters that allow them to haveeatgrflexibility. In

order to add this flexibility to an existing EHK, a non-lineactivation function

is needed, that depends on one parameter. Moreover, thiatamt function must
preserve the PSD property.

Proposition 1. Let K a Kernel inzZ and consider the function

fact(x) = (1 1ax> %

foranya € (0,1). Then f(K(x,y)) is a kernel inzZ’.

Proof. Immediate using properties described in [4, 811

We will refer to fact(K(X,y)) as an EHK with parameter or EHK,.

4 Experimental work

Experimental work is now presented in different benchnragkiata sets: a specially
designed synthetic data set, several problems from the &fksitory [2] and a cou-
ple of our own. We perform a comparative study between SVNtgusvo variants
of RBF kernels (see below) and SVMs using the two EHK kefnels

4.1 Synthetic data

Our first problem has been created artificially for illustraipurposes. It consists of
11 features generated from known distributions, as inditat Table 1.

1 We used the R language for statistical computing [1] extenddutivitkernlabpackage.
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Table1 Probability distributiondand their parameters for the artificially generated problem.

Feature 1 2 3 4 5 6 7 8 9 10
Distrib.  Gau Poi  Gmt Unf Unf Exp Gau Gau Bin Ber
Params. p,0%2 A p ab ab A u0® po?  np p
Value u=3 A=3 p=06a=-3a=100A=4 u=0 pu=05 n=20 p=0.28
0%2=05 b=10 b=200 0°=1 0°=2 p=1/3

& Gau=Gaussian, Poi=Poisson, Gmt=Geometric, Unf=Uniform, Expefsptial, Bin=Binomial,
Ber=Bernoulli.

The eleventh feature is categoric with four equally-prdéatnodalities (say
A, B,C and D). The rules that set the class feature are as follows.vlatector
instance of the data set amdstand for the value of itsth feature; then

o ifVi>2AVvo>1AV3<4AVs>—24AV5>103AVg < 1AV7 > —1.9AVvg <
AAVg > 4Avi0=0A (vi1="B" Vv =“C") then the class is 1;

e ifvi<38AV, <B6AV3<2AV4<94ANV5<196AVe > 0.01AV7 < 2AVg >
—3AVvg < 8A(vi1="A"Vvi1="D") then the classis 1,

e otherwisethe classis-1.

We created random samples 500 instances each, and thetuicgh5%10%,
..., 85% of missing values, in steps of 5%. The aim is to asceh@wnthe methods
can cope with the existence of an ever larger percentagessimgi values. We use
two methods to code missing values with the RBF kernel:

RBF1 missing values are imputed by mean or mode, dependirtbeofeature
being continuous or categoric.

RBF2 missing values are imputed by a zero and a new featuuencois added
with zeros; in the position of missing values, the zeros eptaced by ones.

In both methods, we code categorical attributes using ayuegresentation, a
standard practice [12]. In Fig. 1 we see the results for tieréint methods. Each
point is the mean of 50 different data sets. In each one, thbade were evaluated
using 10 times of 10-fold cross-validation. EHK1 and EHKEpresent the EHK
and EHKy kernels with the true density (or mass) function; EHK2 anKER rep-
resent the same kernels obtained using uniform KDE and é&mtigt probabilities.

We can see that the EHKF1 is the best method as could be egpbatdEHKF2
is also quite good. For this reason, from here on, all theidesgor numeric fea-
tures are estimated using the kernel developed in sect®riN®te also the drastic
degradation of the RBF2 from 0% to 5%, probably due to theeimemt in input
dimension (which only happens at this step). Also, at veghtpercentages (80%
and more), all methods tend to perform as the baseline pesiuce.
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Synthetic Data
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Fig. 1 Evolution of mean error (in %) in the synthetic problem for e&sing percentages of
missing values. The top horizontal line indicates the baselirfeqpeance using the majority class.

4.2 Real-world data sets

A description of the selected problems follows:

1.

2.

The REDITCRX data set (from UCI) has 690 instances and 15 featuresiofwh

9 are categoric and 6 are numeric. It contains a 0.65% of ngsailues.

The HorRsECoLIC data set (from UCI) has 366 instances and 22 features of
which 12 are categoric, 7 are continuous and 3 are disctetentains a 23.75%

of missing values. Note the original data set has 27 fegtwedave removed
those numbered 3, 25, 26, 27 and 28 because they are dedaretralevant to

the task. Further, two class features can be used: featthr2@ possible cases:
'lived’, 'died’ and 'euthanized’) and 24 (the horse had soadjlesion or not).

. The FECALSOURCEdata set has been donated by the Microbiology Department

at the University of Barcelona. There are 144 instances w@tldichotomous
features, that are molecular tests signaling the presenoertain molecules in
animal fecal samples. This dataset contains a 19.95% ofingisslues. The
class feature has four possible cases: 'human’, 'bovipeyltry’ and 'porcine’.

. The ERvo data set (from UCI) has 167 instances described by 4 mamedal

categoric features. This data set does not contain missilugs.

. The WASTE WATER TREATMENT PLANT (WWTP) data set has been donated

by the Chemical Engineering Department at the Universit@iobna [3]. There
are 279 instances and 91 continuous features that replegget information
of plant process output. This dataset contains a 32.83%sxfing values.

In Table 2 we can see the results obtained with the differethots. These are

the results of parameter optimizatio@, ¢ for the two RBFsC for EHK or C,a
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for EHKg) using again the mean of 10 times of 10-fold cross-valigatibhe &
parameter was also optimized in the regression taskr\(§ and WWTP).

Table2 Detailed results. In case of classification tasks these are theatesrin % and the 'Base’
results correspond to 100% minus the majority class; in regressks taese araormalized root
mean square error€NRMSE) and the 'Base’ results correspond to the best constantifnode

Problem/Method Base RBF RBF, EHK EHKq

CREDITCRX 44.49 13.80 14.09 12.81 12.54
HORSECOLIC-23 38.53 29.23 29.90 29.14 27.54
HORSECOLIC-24 36.96 16.50 18.89 15.95 15.47
FECALSOURCE 65.54 31.37 29.32 25.21 23.87
SERVO 1.000 0.406 0.406 0.541 0.321

WWTP 1.000 0.456 0.531 0.396 0.395

@ This corresponds to a NRMSE of 1.
b In the SERvO problem there are no missing values, thus both RBF methods ceincid

The two RBF methods do not seem to yield significant diffeesninn perfor-
mance. Given that the parameters have been fully optimizédth cases, this may
indicate a lower bound in performance that cannot be suepasith such direct
ways of missing value treatment. On the other hand, the twK E&tnels behave
comparably well, delivering better mean results, sometiswbstantially, as in the
FECALSOURCEproblem. This problem is notoriously difficult, having foclasses
with less than 150 observations in total. It also seems #sagxpected, the more
flexible kernel EHK; is able to achieve general better results.

5 Conclusions

This paper has presented a rigorous extension for uniegkiinels that is able to
deal with missing values. We would like to emphasize that axeehadvocated for
the use opartial (or univariate) kernels for every descriptive variable #relbuild-
ing of a final kernel as the composition aggregationof these partial kernels, an
idea that can be traced back to Vapnik [17]. From the obtaiasdlts it can be con-
cluded that the derived kernels have yielded satisfactesylts. In the first place,
our extended kernels behave very well when using the trugitiles) which provides
empirical support for the theoretically developed ideaddd, the extended ker-
nels using non-parametric density estimation behave nadpwell and markedly
better than standard kernels. This can be specially rebiizthe experiments with
synthetic data. This of course is no proof that they are advaapetter choice, but
adds strong support to the motivations of the work and to thgisns envisaged.
A recognized drawback of the work is the computational timleich we expect
to improve in the future, by making more extensive use ofaneental computa-
tions. A clear avenue for future research is the extensiotheinethod for other
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data types for the features; for example, bit strings, fdeayures, ordinal features,
etc, could be accommodated with ease. We also envisagettres®sn of other ker-
nels for complex data types already present in the liteeaeug., for trees or text).

Acknowledgementéuthors wish to thank the Spanish CICyT Project CGL2007-
65980-C02-01/HID and the anonymous reviewers for thepfaébsuggestions.

Appendix

Proof for Theorem 3. If M = [my;] is am x n matrix whose elements are continu-
ous functions in an interval, then the integralMfis again am x n matrix whose
elements are the integrals of the elementbdlpthat is to say:

b b
/M:[/ m;| wherea,beR.
a a

Suppose we have afinite samgle..., x, € 27 of whichk are non-missing values
andn — k are missing values. We order the sample so that the nonrngissiues

go first and then come the missing ones, i.e., consider a pationo (xi, ..., X)) =
(X X - Xy, Ximye 1 Xmy 5 -+ Xorg ) WItR Xy, X 72 27 @Nd Xy g, Xy =

2. Then defines” = [kij] with kij = K(x;,X;), A= [aj] with aj = K (Xm, Xm, ) and
A = [a;] with &} = K (xn,Xm; ). Hence,

K (Xmys Xmy) -« KXy Xm) | K(Xmgs Xmeiq) <o KXy Xy )

A | KO Xm) . KX Xm,) K (X Xmeeq) oo K Xm,)
K (Xme 1o Xmy) -+ K(Xmy, 1> Xm ) [K (Xmg 5 Xmi 1) -+ K(Xmy, 15 Xmyn)

R (o Xen) - R Ot den) | Ry Hena) - R ()

K Xy s Xmy ) -+ K (Xmy , Xm, )

AL A
= <F;'ATZ;> where  Aj = : : ,

K (Xmg, Xmy ) -+~ K(Xm;Xm,)
fj?” P(XWH)K(Xml’X”Ml)deKH f)f” P(th)K(Xml,th)dem

/
A2: 5

L POt K (e X2 ) @1 - P ) K (X X )l
Py = (A)T and
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(MP(me)fy,/P(erkH)K(xml,wH)dxwﬂdmﬂ oo Lo POma) [ Py 1 JK (X3 5 X ) %X 3 Ay
= . .

1% P(XWHU% P(XrTh)K.(XrTthnyH )d)‘fmdx«“rkﬂ . S PO ) S Py )lK(eraan)d)deM

An equivalent definition ig\ = [, P(Xm,) ... [ - P(Xmc.1) A dXn,; ... AXm,, i€,

ai/J' :/%P(Xﬂh)---/jfp(xnhl)aij AXmy, g -+ - AXm, =

- /){r P, /%, P(X‘Tkﬂ)K(Xn%ij)ankH...d)th

because, if:
) Xm,Xm; # 27, then

aj :/){P(th).../){P(XWH)K(M,ij)d)qWH...dxmn =

— K (X X, (/f P(Mﬂ)dxfm“) (/}f P(xmn)dxnh) = K (X Xy
i) Xm # 2 andxm; = 2" wherej =k+1,...,n, then

/

= [ POm)- [ PO K Ot ik, =

</ﬂ P(xwﬂ)dxmﬁl) </ﬂ P(xmj)K(xm,xmj)dxmj) (/Jg P(x,m)dxmn>

= [ PO K ()
i) Xm =Xm; = 2" wherei, j =k+1,...n, then

aj :./%P(xmj)..../%P(xm(+1)K(xm,xmj)dxmwl...dxmn =
(/, Pomcidinc, ). (], Pl | P K b ). (P,

,/ P( )/%P(ij)K(Xn’thj)dejde

Now we are going to prove that is PSD. Using the last expression it

yTAy=y" ( p P(Xm,) - - p P(Xme,,) /}f P(Xm,.1) A dXn, - ..dxmn) y
which, by the linearity of the integral, is equal to

/ PO, / (Xm. 2)/ P(Xm1) (YT AY) A, - X, )
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We know thaty" Ay > 0 for all y € R", becauseK is a Kernel. The product of
non-negative functions is non-negative and the definitegiral of a non-negative
function is non-negative. Therefore we have tRéXm, +1)yTAy is a non-negative
function becaus®(x) € [0,1] v¥x € R andy" Ayis a non-negative function. Then

| PO )67 Ay, = 0

In general we will have thaf,, P(Xm,,,)(Y' Ay)dxn,,, is a non-negative function
andP(Xm,,,) > 0. Therefore,

/% (P(Xnmz)/% P(thl)yTAdeer) dXm,, > 0

Iterating this argument we conclude that (4) is a non-negditinction for ally € R"
and consequentl’ is PSD. By Lemma 1% is PSD, and s& is a Kernel. O
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