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Abstract An extension for univariate kernels that deals with missingvalues is pro-
posed. These extended kernels are shown to be valid Mercer kernels and can adapt
to many types of variables, such as categorical or continuous. The proposed kernels
are tested against standard RBF kernels in a variety of benchmark problems show-
ing different amounts of missing values and variable types.Our experimental results
are very satisfactory, because they usually yield slight tomuch better improvements
over those achieved with standard methods.

1 Introduction

In the last few yearskernel methodshave become a very popular topic of research.
One of the most relevant problems in kernel-based learning machines, in terms of
practical applications, is thechoiceof an appropriate kernel. This kernel should be a
measure that adequately captures meaningful relations in the data. A proper kernel
choice should result in more adequate learning machines, less likely to overfit and
thus showing a better generalization ability.

Real-world data come from many different sources, described by mixtures of nu-
meric and qualitative variables. These variables may require completely different
treatments and are traditionally handled bypreparing the data using a number of
coding methods. These codings may entail an unknown change in input distribution
or an increase in dimension, increasing the likelihood of overfitting and also the
training or optimization time. Moreover, and most importantly, sometimes the data

Guillermo Nebot-Troyano
Faculty of Computer Science, Polytechnical University of Catalonia, Barcelona, Spain
e-mail:willynt@msn.com
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sets exhibitmissing valuesby diverse causes. These missing values are always a
serious problem because they require a preprocessing (either a coding or an impu-
tation) of the dataset in order to be able to use a classical kernel.

In this work we present a method for dealing with missing values that rigorously
extendsanykernel to one that copes with missing information and without the need
of any coding or imputation mechanism. The method can make use of distributional
or probabilistic assumptions about the variables. In the often encountered situation
that this knowledge is not available, we advocate for the useof samplestatistics
(very much like in Näıve Bayes methods), in the form of density estimation or fre-
quentist probabilities; contrary to other methods, no parametric knowledge is re-
quired. In addition, the proposed kernels can accept mixed data types, a common
situation in real-world data. We present successful experimental results against stan-
dard RBF kernels in a variety of benchmark problems showing different amounts of
missing values and different variable types.

2 Preliminaries

The Support Vector Machine (SVM) was developed by Vapnik andhis coworkers,
initially for classification problems and has won great popularity as a tool for the
identification of nonlinear systems [16]. A nice introduction to SVMs and kernel
machines is [5]. A key idea in kernel machines is that of thekernel, but the SVM
formulation does not include criteria to select a kernel function. A standard result
for identifying such functions can be derived from Mercer’sresult [10]:

Theorem 1. A continuous and symmetric function K: H ×H → R is a kernel if it
satisfies the condition:

∫

H ×H

K(x,y)g(x)g(y)dxdy≥ 0

for any function g such that
∫

H
(g(x))2dx< ∞

If the functionK gives rise to a positive integral operator, its evaluation can be ex-
pressed as an absolutely and uniformly convergent series (finite or infinite), almost
everywhere [10]. Except for specific cases, it may not be easyto check whether this
condition is satisfied. For this reason we show another, equivalent, definition:

Theorem 2. The function K: H ×H → R is a kernel if and only if for any finite
subset{x1,x2, ...,xn} ∈ H the associated kernel matrix Kn×n = (ki j ), where ki j =
K(xi ,x j) is a symmetric positive semidefinite (PSD) matrix.

This condition is in general easier to check than Mercer’s condition. Among the
most widely used and well-known kernels we find the Polynomial kernelK(u,v) =
(< u,v > +γ)d with γ ≥ 0 ∈ R andd ∈ N parameters (where<,> denotes scalar
product) and the Gaussian kernel, one of a number of kernels known as Radial Basis
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Function (RBF) kernels,K(u,v) = exp(− ||u−v||2

2σ2 ), with σ ∈R a parameter. This one
is by far the most popular choice of kernel in SVMs; it also includes the polynomial
kernel as a limiting case.

Kernel functions can be conceptually regarded as similarity functions [14], al-
though not all kernels fulfill all the properties for a similarity (e.g. boundedness).
The work of Gower in general similarity measures [7] shows some partial coef-
ficients of similarity for three different types of features: Dichotomous (Binary),
Qualitative (Categoric) and Quantitative (Continuous andDiscrete) features, that
are shown to produce PSD matrices; these functions can hencebe seen as kernels.
For any two observationsxi ,x j ∈ H to be compared on the basis of a featurek a
score si jk is built: first δi jk is defined as 0 when the comparison ofxi ,x j cannot be
performed on the basis of featurek for some reason (e.g., by the presence of missing
values);δi jk is 1 when such comparison is meaningful. The coefficient of similarity
betweenxi ,x j is defined as the average score over all the partial comparisons:

Si j =
∑n

k=1si jkδi jk

∑n
k=1 δi jk

. (1)

The scoressi jk are defined as follows [7]:

i) For Dichotomous (binary) features: The presence of the feature is denoted by+
and its absence by−; negative matches (i.e., absence - absence) are not consid-
ered meaningful. When there are no missing values for featurek,

Values
observationxi + + − −
observationx j + − + −

si jk 1 0 0 0
δi jk 1 1 1 0

ii) For Qualitative features: Let I{·} = 1 when the argument is true and 0 otherwise;
thensi jk = I{xik=x jk}.

iii) For Quantitative features, si jk = 1−
|xik−x jk|

Rk
, whereRk is therangeof featurek

(the difference between the maximum and minimum attainablevalues).

Gower proves that,if there are no missing values, the matrixS= (Si j ) is PSD.
This property may be lost when there are. An example will suffice: letX denote
a missing value and consider three observations with four quantitative features in
[1,5] (Rk = 4), x1 = (1,2,3,1),x2 = (1,3,3,X ) andx3 = (1,3,3,5). In this case,

S=





1 11
12

11
16

11
12 1 1
15
16 1 1



 , det(S) = −
121
2304

< 0

and thereforeS is not PSD; but if we replaceX by anyprecise value in[1,5], then
the matrixS is certainly PSD.
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3 Main results

Missing information is an old issue in statistical analysis[9]. Missing values are
very common in Medicine and Engineering, where many variables come from on-
line sensors or device measurements, or are simply too costly to be measured at the
same rate as other variables. In this section we present an approach that allows the
extensionof any kernel to one that is defined even in the presence of missing val-
ues. Moreover, the value returned by the kernels in this situation can be explained in
meaningful terms. There are two basic ways of dealing with missing data, bycom-
pleting the data description in a (hopefully) optimal way, or byextendingthe meth-
ods to work with incomplete descriptions. Our way to create kernels with missing
values follows the latter idea and offers some important advantages:

1. Any kernelK can be extended to adapt to a dataset with missing values;
2. No preprocessing of the missing values is needed; we create kernels by calculat-

ing directly the values ofK(x,X ) andK(X ,X ) whereX represents a missing
value –behaving as anincomparableelement w.r.t. any ordering relation– with-
out the need to estimate the value ofX ;

3. There is no need of removing information because of the missing values; i.e., no
information is lost;

4. Missing values are allowed both in training andtest examples (which is quite
difficult with traditional imputation methods).

Lemma 1. LetH any set, x1,x2, ...,xn ∈H and let f : H ×H →R a symmetrical
function. Let A∈ Mn×n a PSD matrix where A= [ai j ] with ai j = f (xi ,x j). Letσ be
any permutation of x1, ...,xn, i.e., σ(x1, ...,xn) = (xσ(1), ...,xσ(n)); then the matrix
Aσ = [aσ

i j ] with aσ
i j = f (xσ(i),xσ( j)) is PSD.

Proof. Let A andAσ be the matrices of the lemma and letσ any permutation of
x1, ...,xn, that is,σ(x1, ...,xn) = (xσ(1), ...,xσ(n)). In order forAσ to be PSD, we
must prove that∀z∈ R

n zTAσ z≥ 0, provided∀y∈ R
n yTAy≥ 0.

Then 0≤ yTAy= σ(yT)σ(A)σ(y)= σ(yT)Aσ σ(y), whereσ(y)= (yσ(1), ...,yσ(n))
andσ(A) = [σ(ai j )], with σ(ai j ) = f (xσ(i),xσ( j)) = aσ

i j ; i.e., σ(A) = Aσ . Now we
know that∀y ∈ R

n, σ(yT)Aσ σ(y) ≥ 0, that is the same that∀z∈ R
n zTAz≥ 0,

becauseσ is a permutation function.⊓⊔

This result is important and useful because if we prove that one matrix, that
depends on a symmetrical function, is PSD for an arrangementof the dataset, then
the matrix is PSD for any rearrangement (reordering of the observations) of it.

Theorem 3. Let K be a kernel in a setH (e.g. a similarity function) and P a prob-
ability density function inH . Then the function

K̂(x,y) =



















K(x,y), if x,y 6= X ;
∫

H
P(y)K(x,y)dy, if x 6= X and y= X ;

∫

H
P(x)K(x,y)dx, if x = X and y6= X ;

∫

H
P(x)

∫

H
P(y)K(x,y)dydx, if x = y = X
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is a kernel inH ∪{X }.

Proof. Developed in the Appendix, for clarity.⊓⊔

Theorem 4. Let K be a kernel inH (e.g. a similarity function) and P a probability
mass function inH . Then the function

K̂(x,y) =



















K(x,y), if x,y 6= X ;

∑y∈H P(y)K(x,y), if x 6= X and y= X ;

∑x∈H P(x)K(x,y), if x = X and y6= X ;

∑x∈H P(x)∑y∈H P(y)K(x,y), if x = y = X

is a kernel inH ∪{X }.

Proof. It is analogous to that of Theorem 3, changing the integrals by summations,
since the summation has also the linearity property.⊓⊔

3.1 Motivation of the extension

Given a two-place symmetric functionK : H ×H → R, we aim to find that func-
tion κ that is the minimizer of

E[κ] =
∫

H

1
2

∫

H

(κ(z)−K(z,x))2p(z,x) dx dz

whose solution isκ(z) =
∫

H
K(z,x)p(x) dx, by making use that, in the present

situation,p(z,x) = p(z)p(x). Therefore we define the kernel extensionK̂(z,X ) =
κ(z). The value of the kernel whenboth values are missing can be explained as
follows. Focusing on one of the missing values, it certainlyhas to be one of the
possible values, with some probability. Fixing it to, say,z, then the kernel has to be
K(z,X ) by the previous result. The overall expression is thereforetheexpectation
of K(z,X ) seen as a function ofz.

3.2 Nonparametric Kernel Density estimation

If the densities or mass probability functionsf (x) are not known they can be esti-
mated using the data set by applying non-parametric methodsfor estimation. One of
these methods is the Parzen windows technique [11] or more generallykernel den-
sity estimation(KDE). A challenging task in the general case, in the univariate case
the KDE approach is to considerx1, ...,xn an i.i.d. sample of an absolutely continu-
ous random variableX with unknown densityf (x), and define the empirical distri-
bution function asFn(x) = n−1 ∑n

i=1 I{xi≤x}, which is an estimator of the true (cumu-
lative) distribution functionF(x) of X. Knowing that the densityf (x) is the deriva-
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tive of the distribution functionF we expresŝfh(x) = (2h)−1[Fn(x+h)−Fn(x−h)],
for a smallh > 0. This is equivalent to the proportion of points in the interval
(x− h,x+ h) divided by h. It is common that the amount of smoothing depends
on the number of data points; then we have:

f̂h(x) =
1
n

n

∑
i=1

1
hn

ϕ
(

x−xi

hn

)

(2)

A particular choice for the weight function (also called Parzen window oruni-
form kernel) is ϕ(z) = 1

2I{|z|≤1}. Generally,ϕ andh must satisfy certain conditions
of regularity, such thatϕ is bounded and absolutely integrable inR and integrates
to 1 and lim

n→∞
hn = 0. Usually,ϕ(z) ≥ 0 andϕ(z) = ϕ(−z). Among the most widely

used kernels we also find the Gaussian or the Epanechnikov kernels [6]. If the band-
width h is very small then the estimation of the density function degenerates to
a collection ofn spikes centered at the data points. Ifh is too big then the esti-
mation is oversmoothed and tends to the uniform distribution. A typical choice is
h = h0n−1/2, whereh0 is a free parameter to be determined. This estimation is con-
sistent and asymptotically normal [13]. In this work we use the bandwidth selection
method using pilot estimation of derivatives, described in[15].

3.3 Extended kernel using uniform KDE

We illustrate the previous ideas by coupling the extended version of the kernels
developed in section 2 with KDE. LetH ∈ R be any bounded subset and denote
b = sup

x,y∈H
|x−y| anda = inf

x,y∈H
|x−y|. According to Theorem 3, for any finite subset

{x1,x2, ...,xn} ∈ H,

K̂1(xi ,x j) =































1−
|xi−x j |

b−a , if xi ,x j 6= X ;

g1(xi), if xi 6= X andx j = X ;

g1(x j), if xi = X andx j 6= X ;

G1, if xi = x j = X andi 6= j;

1 if xi = x j = X andi = j

is a valid PSD kernel, where

g1(z) =

∫ ∞

−∞
f̂ (x)

(

1−
|x−z|
b−a

)

dx=

∫ ∞

−∞

1
nh

n

∑
i=1

ϕ
(

x−xi

h

)(

1−
|x−z|
b−a

)

dx

=
1
nh

n

∑
i=1

∫ ∞

−∞
ϕ

(

x−xi

h

)(

1−
|x−z|
b−a

)

dx=
1
nh

n

∑
i=1

1
2

∫ xi+h

xi−h

(

1−
|x−z|
b−a

)

dx
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=
1

2nh

n

∑
i=1

αi(z), with αi(z) =











2h(b−z+xi−a)
b−a , if z> xi +h ;

2h(b−a)−(xi−z)2−h2

b−a , if xi −h≤ z≤ xi +h;
2h(b−xi+z−a)

b−a , if z< xi −h

andG1 =
∫ ∞

−∞
f̂ (z)g1(z)dz=

1
2nh

n

∑
i=1

∫ ∞

−∞

1
nh

n

∑
j=1

ϕ
(

z−x j

h

)

αi(z)dz=

=

(

1
2nh

)2 n

∑
i=1

n

∑
j=1

∫ x j+h

x j−h
αi(z)dz=

(

1
2nh

)2 n

∑
i=1

n

∑
j=1

βi j

with

βi j =







































4h2(b−x j+xi−a)
b−a , if xi +h < x j −h ;

12(b−a)h2−(xi−x j )
3−2h(4h2+3(xi−x j )

2)

3(b−a) , if x j −h≤ xi +h < x j +h;
4h2(3(b−a)−2h)

3(b−a) , if x j = xi ;
12(b−a)h2+(xi−x j )

3−2h(4h2+3(xi−x j )
2)

3(b−a) , if x j −h < xi −h≤ x j +h;
4h2(b−xi+x j−a)

b−a , if x j +h < xi −h

3.4 Extended kernel for categoric features

Consider now a categoric feature that takes values in the finite setV = {v1, ...,vl}.
An extended kernel can be built around Gower’s result for qualitative features (sec-
tion 2). The probability mass functionf for this type of feature can be estimated
in the usual way from the data set by the frequency of every modality among the
values that are non-missing for this feature. Then, for allvi ,v j ∈ V ,

K2(vi ,v j) =































I{vi=v j}, if vi ,v j 6= X ;

g2(vi), if vi 6= X andv j = X ;

g2(v j), if vi = X andv j 6= X ;

G2, if vi = v j = X andi 6= j;

1 if vi = v j = X andi = j

whereg2(z)=
l

∑
i=1

f (vi)I{vi=z} = f (z) and G2 =
l

∑
i=1

f (vi)
2, is a PSD kernel inV ∪{X }.

3.5 Extended Heterogeneous Kernel

We show now how to create a full kernel inH = H1× ...×Ht from a collection
of extendedpartial kernelsKi defined in the sets{Hi}i=1÷t .
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Theorem 5. If {Ki}i=1÷t are kernels defined in the setsHi , the function:

K (x,y) =
1
t

t

∑
i=1

Ki(xi ,yi) (3)

is a kernel in the product spaceH .

Proof. The sum oft > 0 PSD matrices is a PSD matrix; take any realr > 0 and a
PSD matrixA, thenrA is again PSD (in the present case,r = 1/t). ⊓⊔

We will refer to (3) as anExtended Heterogeneous Kernelor EHK.

3.6 Adding flexibility to an EHK

Typically kernels have parameters that allow them to have a greaterflexibility. In
order to add this flexibility to an existing EHK, a non-linearactivation function
is needed, that depends on one parameter. Moreover, this activation function must
preserve the PSD property.

Proposition 1. Let K a Kernel inH and consider the function

fact(x) =

(

1
1−αx

) 1
α

for anyα ∈ (0,1). Then fact(K(x,y)) is a kernel inH .

Proof. Immediate using properties described in [4, 8].⊓⊔

We will refer to fact(K(x,y)) as an EHK with parameterα or EHKα .

4 Experimental work

Experimental work is now presented in different benchmarking data sets: a specially
designed synthetic data set, several problems from the UCI repository [2] and a cou-
ple of our own. We perform a comparative study between SVMs using two variants
of RBF kernels (see below) and SVMs using the two EHK kernels1.

4.1 Synthetic data

Our first problem has been created artificially for illustrative purposes. It consists of
11 features generated from known distributions, as indicated in Table 1.

1 We used the R language for statistical computing [1] extended with thekernlabpackage.
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Table 1 Probability distributionsa and their parameters for the artificially generated problem.

Feature 1 2 3 4 5 6 7 8 9 10

Distrib. Gau Poi Gmt Unf Unf Exp Gau Gau Bin Ber
Params. µ,σ2 λ p a,b a,b λ µ,σ2 µ,σ2 n, p p
Value µ = 3 λ = 3 p = 0.6 a = −3 a = 100 λ = 4 µ = 0 µ = 0.5 n = 20 p = 0.28

σ2 = 0.5 b = 10 b = 200 σ2 = 1 σ2 = 2 p = 1/3

a Gau=Gaussian, Poi=Poisson, Gmt=Geometric, Unf=Uniform, Exp=Exponential, Bin=Binomial,
Ber=Bernoulli.

The eleventh feature is categoric with four equally-probable modalities (say
A,B,C and D). The rules that set the class feature are as follows. Letv a vector
instance of the data set andvi stand for the value of itsi-th feature; then

• if v1 > 2∧ v2 ≥ 1∧ v3 < 4∧ v4 > −2.4∧ v5 ≥ 103∧ v6 ≤ 1∧ v7 ≥ −1.9∧ v8 <
4∧v9 ≥ 4∧v10 = 0∧ (v11 = “B” ∨v11 = “C”) then the class is 1;

• if v1 < 3.8∧ v2 ≤ 6∧ v3 ≤ 2∧ v4 ≤ 9.4∧ v5 < 196∧ v6 > 0.01∧ v7 ≤ 2∧ v8 ≥
−3∧v9 ≤ 8∧ (v11 = “A” ∨v11 = “D”) then the class is 1;

• otherwise the class is−1.

We created random samples 500 instances each, and then introduced 5%,10%,
. . ., 85% of missing values, in steps of 5%. The aim is to ascertainhow the methods
can cope with the existence of an ever larger percentage of missing values. We use
two methods to code missing values with the RBF kernel:

RBF1 missing values are imputed by mean or mode, depending onthe feature
being continuous or categoric.

RBF2 missing values are imputed by a zero and a new feature column is added
with zeros; in the position of missing values, the zeros are replaced by ones.

In both methods, we code categorical attributes using a unary representation, a
standard practice [12]. In Fig. 1 we see the results for the different methods. Each
point is the mean of 50 different data sets. In each one, the methods were evaluated
using 10 times of 10-fold cross-validation. EHK1 and EHKF1 represent the EHK
and EHKα kernels with the true density (or mass) function; EHK2 and EHKF2 rep-
resent the same kernels obtained using uniform KDE and frequentist probabilities.

We can see that the EHKF1 is the best method as could be expected, but EHKF2
is also quite good. For this reason, from here on, all the densities for numeric fea-
tures are estimated using the kernel developed in section 3.3. Note also the drastic
degradation of the RBF2 from 0% to 5%, probably due to the increment in input
dimension (which only happens at this step). Also, at very high percentages (80%
and more), all methods tend to perform as the baseline performance.
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Fig. 1 Evolution of mean error (in %) in the synthetic problem for increasing percentages of
missing values. The top horizontal line indicates the baseline performance using the majority class.

4.2 Real-world data sets

A description of the selected problems follows:

1. The CREDITCRX data set (from UCI) has 690 instances and 15 features of which
9 are categoric and 6 are numeric. It contains a 0.65% of missing values.

2. The HORSECOLIC data set (from UCI) has 366 instances and 22 features of
which 12 are categoric, 7 are continuous and 3 are discrete. It contains a 23.75%
of missing values. Note the original data set has 27 features; we have removed
those numbered 3, 25, 26, 27 and 28 because they are declared as not relevant to
the task. Further, two class features can be used: feature 23(three possible cases:
’lived’, ’died’ and ’euthanized’) and 24 (the horse had surgical lesion or not).

3. The FECALSOURCEdata set has been donated by the Microbiology Department
at the University of Barcelona. There are 144 instances with10 dichotomous
features, that are molecular tests signaling the presence of certain molecules in
animal fecal samples. This dataset contains a 19.95% of missing values. The
class feature has four possible cases: ’human’, ’bovine’, ’poultry’ and ’porcine’.

4. The SERVO data set (from UCI) has 167 instances described by 4 many-valued
categoric features. This data set does not contain missing values.

5. The WASTE WATER TREATMENT PLANT (WWTP) data set has been donated
by the Chemical Engineering Department at the University ofGirona [3]. There
are 279 instances and 91 continuous features that representlagged information
of plant process output. This dataset contains a 32.83% of missing values.

In Table 2 we can see the results obtained with the different methods. These are
the results of parameter optimization (C,σ for the two RBFs,C for EHK or C,α
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for EHKα ) using again the mean of 10 times of 10-fold cross-validation. Theε
parameter was also optimized in the regression tasks (SERVO and WWTP).

Table 2 Detailed results. In case of classification tasks these are the errorrates in % and the ’Base’
results correspond to 100% minus the majority class; in regression tasks these arenormalized root
mean square errors(NRMSE) and the ’Base’ results correspond to the best constant modela.

Problem/Method Base RBF1 RBF2 EHK EHKα

CREDITCRX 44.49 13.80 14.09 12.81 12.54
HORSECOLIC-23 38.53 29.23 29.90 29.14 27.54
HORSECOLIC-24 36.96 16.50 18.89 15.95 15.47
FECALSOURCE 65.54 31.37 29.32 25.21 23.87
SERVO 1.000 0.406 0.406b 0.541 0.321
WWTP 1.000 0.456 0.531 0.396 0.395

a This corresponds to a NRMSE of 1.
b In the SERVO problem there are no missing values, thus both RBF methods coincide.

The two RBF methods do not seem to yield significant differences in perfor-
mance. Given that the parameters have been fully optimized in both cases, this may
indicate a lower bound in performance that cannot be surpassed with such direct
ways of missing value treatment. On the other hand, the two EHK kernels behave
comparably well, delivering better mean results, sometimes substantially, as in the
FECALSOURCEproblem. This problem is notoriously difficult, having fourclasses
with less than 150 observations in total. It also seems that,as expected, the more
flexible kernel EHKα is able to achieve general better results.

5 Conclusions

This paper has presented a rigorous extension for univariate kernels that is able to
deal with missing values. We would like to emphasize that we have advocated for
the use ofpartial (or univariate) kernels for every descriptive variable andthe build-
ing of a final kernel as the composition oraggregationof these partial kernels, an
idea that can be traced back to Vapnik [17]. From the obtainedresults it can be con-
cluded that the derived kernels have yielded satisfactory results. In the first place,
our extended kernels behave very well when using the true densities, which provides
empirical support for the theoretically developed ideas. Second, the extended ker-
nels using non-parametric density estimation behave reasonably well and markedly
better than standard kernels. This can be specially realized in the experiments with
synthetic data. This of course is no proof that they are always a better choice, but
adds strong support to the motivations of the work and to the solutions envisaged.

A recognized drawback of the work is the computational time,which we expect
to improve in the future, by making more extensive use of incremental computa-
tions. A clear avenue for future research is the extension ofthe method for other
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data types for the features; for example, bit strings, fuzzyfeatures, ordinal features,
etc, could be accommodated with ease. We also envisage the extension of other ker-
nels for complex data types already present in the literature (e.g., for trees or text).

Acknowledgements. Authors wish to thank the Spanish CICyT Project CGL2007-
65980-C02-01/HID and the anonymous reviewers for their helpful suggestions.

Appendix

Proof for Theorem 3. If M = [mi j ] is am×n matrix whose elements are continu-
ous functions in an interval, then the integral ofM is again am×n matrix whose
elements are the integrals of the elements ofM, that is to say:

∫ b

a
M = [

∫ b

a
mi j ] wherea,b∈ R.

Suppose we have a finite samplex1, ...,xn ∈H of whichk are non-missing values
andn− k are missing values. We order the sample so that the non-missing values
go first and then come the missing ones, i.e., consider a permutationσ(x1, ...,xn) =
(xm1,xm2...,xmk,xmk+1,xmk+2, ...,xmn), with xm1, . . . ,xmk 6= X and xmk+1, . . . ,xmn =

X . Then defineK = [ki j ] with ki j = K̂(xi ,x j), A = [ai j ] with ai j = K(xmi ,xmj ) and
A′ = [a′i j ] with a′i j = K̂(xmi ,xmj ). Hence,

A′ =





















K(xm1,xm1) . . . K(xm1,xmk) K̂(xm1,xmk+1) . . . K̂(xm1,xmn)
...

. . .
...

... . . .
...

K(xmk,xm1) . . . K(xmk,xmk) K̂(xmk,xmk+1) . . . K̂(xmk,xmn)

K̂(xmk+1,xm1) . . . K̂(xmk+1,xmk) K̂(xmk+1,xmk+1) . . . K̂(xmk+1,xmn)
... . . .

...
...

.. .
...

K̂(xmn,xm1) . . . K̂(xmn,xmk) K̂(xmn,xmk+1) . . . K̂(xmn,xmn)





















=

(

A′
1 A′

2
A′

3 A′
4

)

where A′
1 =







K(xm1,xm1) . . . K(xm1,xmk)
...

. . .
...

K(xmk,xm1) . . . K(xmk,xmk)






,

A′
2 =







∫

H
P(xmk+1)K(xm1,xmk+1)dxmk+1 . . .

∫

H
P(xmn)K(xm1,xmn)dxmn

... . . .
...

∫

H
P(xmk+1)K(xmk,xmk+1)dxmk+1 . . .

∫

H
P(xmn)K(xmk,xmn)dxmn






,

A′
3 = (A′

2)
T and
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A′
4 =









∫

H
P(xmk+1)

∫

H
P(xmk+1)K(xmk+1 ,xmk+1)dxmk+1dxmk+1 . . .

∫

H
P(xmn)

∫

H
P(xmk+1)K(xmk+1 ,xmn)dxmk+1dxmn

.

.

.
.. .

.

.

.
∫

H
P(xmk+1)

∫

H
P(xmn)K(xmn ,xmk+1)dxmndxmk+1 . . .

∫

H
P(xmn)

∫

H
P(xmn)K(xmn ,xmn)dxmndxmn









An equivalent definition isA′ =
∫

H
P(xmn) . . .

∫

H
P(xmk+1) A dxmk+1 . . .dxmn, i.e.,

a′i j =
∫

H

P(xmn) . . .
∫

H

P(xmk+1)ai j dxmk+1 . . .dxmn =

=

∫

H

P(xmn) . . .

∫

H

P(xmk+1)K(xmi ,xmj )dxmk+1 . . .dxmn

because, if:

i) xmi ,xmj 6= X , then

a′i j =
∫

H

P(xmn) . . .
∫

H

P(xmk+1)K(xmi ,xmj )dxmk+1 . . .dxmn =

= K(xmi ,xmj )

(

∫

H

P(xmk+1)dxmk+1

)

. . .

(

∫

H

P(xmn)dxmn

)

= K(xmi ,xmj )

ii) xmi 6= X andxmj = X where j = k+1, ...,n, then

a′i j =
∫

H

P(xmn) . . .
∫

H

P(xmk+1)K(xmi ,xmj )dxmk+1 . . .dxmn =

(

∫

H

P(xmk+1)dxmk+1

)

. . .

(

∫

H

P(xmj )K(xmi ,xmj )dxmj

)

. . .

(

∫

H

P(xmn)dxmn

)

=

∫

H

P(xmj )K(xmi ,xmj )dxmj

iii) xmi = xmj = X wherei, j = k+1, ...n, then

a′i j =

∫

H

P(xmn) . . .

∫

H

P(xmk+1)K(xmi ,xmj )dxmk+1 . . .dxmn =

(

∫

H

P(xmk+1)dxmk+1

)

. . .

(

∫

H

P(xmi )
∫

H

P(xmj )K(xmi ,xmj )dxmj dxmi

)

. . .

(

∫

H

P(xmn)dxmn

)

=
∫

H

P(xmi )
∫

H

P(xmj )K(xmi ,xmj )dxmj dxmi

Now we are going to prove thatA′ is PSD. Using the last expression forA′:

yTA′y = yT
(

∫

H

P(xmn) . . .

∫

H

P(xmk+2)

∫

H

P(xmk+1) A dxmk+1 . . .dxmn

)

y

which, by the linearity of the integral, is equal to
∫

H

P(xmn) . . .
∫

H

P(xmk+2)
∫

H

P(xmk+1)
(

yTAy
)

dxmk+1 . . .dxmn (4)
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We know thatyTAy ≥ 0 for all y ∈ R
n, becauseK is a Kernel. The product of

non-negative functions is non-negative and the definite integral of a non-negative
function is non-negative. Therefore we have thatP(xmk+1)y

TAy is a non-negative
function becauseP(x) ∈ [0,1] ∀x∈ R andyTAy is a non-negative function. Then

∫

H

P(xmn)(y
TAy)dxmn ≥ 0

In general we will have that
∫

H
P(xmk+1)(y

TAy)dxmk+1 is a non-negative function
andP(xmk+2) ≥ 0. Therefore,

∫

H

(

P(xmk+2)

∫

H

P(xmk+1)y
TAydxmk+1

)

dxmk+2 ≥ 0

Iterating this argument we conclude that (4) is a non-negative function for ally∈R
n

and consequentlyA′ is PSD. By Lemma 1K is PSD, and soK is a Kernel. ⊓⊔
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