Skip to main content

Parameterization of 3D Conformal Transformations in Conformal Geometric Algebra

  • Chapter
  • First Online:
Geometric Algebra Computing

Abstract

Conformal geometric algebra is a powerful mathematical language for describing and manipulating geometric configurations and their conformal transformations. By providing a 5D algebraic representation of 3D geometric configurations, conformal geometric algebra proves to be very helpful in pose estimation, motion design, and neuron-based machine learning (Bayro-Corrochano et al., J. Math. Imaging Vis. 24(1):55–81, 2006; Dorst et al., Geometric Algebra for Computer Science, Morgan Kaufmann, San Mateo, 2007; Hildenbrand, Comput. Graph. 29(5):795–803, 2005; Lasenby, Computer Algebra and Geometric Algebra with Applications, LNCS, vol. 3519, pp. 298–328, Springer, Berlin, 2005; Li et al., Geometric Computing with Clifford Algebras, pp. 27–60, Springer, Heidelberg, 2001; Mourrain and Stolfi, Invariant Methods in Discrete and Computational Geometry, pp. 107–139, Reidel, Dordrecht, 1995; Rosenhahn and Sommer, J. Math. Imaging Vis. 22:27–70, 2005; Sommer et al., Computer Algebra and Geometric Algebra with Applications, pp. 278–297, Springer, Berlin, 2005). In this chapter, we present some theoretical results on conformal geometric algebra which should prove to be useful in computer applications. The focus is on parameterizing 3D conformal transformations with either quaternionic Vahlen matrices or polynomial Cayley transform from the Lie algebra to the Lie group of conformal transformations in space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 229.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlfors, L.V.: Möbius transformations in ℝn expressed through 2×2 matrices of Clifford numbers. Complex Var. 5, 215–224 (1986)

    MathSciNet  Google Scholar 

  2. Angles, P.: Conformal Groups in Geometry and Spin Structures. Birkhäuser, Basel (2008)

    Book  MATH  Google Scholar 

  3. Bayro-Corrochano, E., Reyes-Lozano, L., Zamora-Esquivel, J.: Conformal geometric algebra for robotic vision. J. Math. Imaging Vis. 24(1), 55–81 (2006)

    Article  MathSciNet  Google Scholar 

  4. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science. Morgan Kaufmann, San Mateo (2007)

    Google Scholar 

  5. Helmstetter, J., Micali, A.: Quadratic Mappings and Clifford Algebras. Birkhäuser, Basel (2000)

    Google Scholar 

  6. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Kluwer, Dordrecht (1984)

    MATH  Google Scholar 

  7. Hildenbrand, D.: Geometric computing in computer graphics using conformal geometric algebra. Comput. Graph. 29(5), 795–803 (2005)

    Article  Google Scholar 

  8. Lasenby, A.: Recent applications of conformal geometric algebra. In: Li, H., et al. (eds.) Computer Algebra and Geometric Algebra with Applications. LNCS, vol. 3519, pp. 298–328. Springer, Berlin (2005)

    Google Scholar 

  9. Li, H.: Invariant Algebras and Geometric Reasoning. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  10. Li, H., Hestenes, D., Rockwood, A.: Generalized homogeneous coordinates for computational geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebras, pp. 27–60. Springer, Heidelberg (2001)

    Google Scholar 

  11. Lounesto, P.: Clifford Algebras and Spinors. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  12. Maks, J.: Clifford algebras and Möbius transformations. In: Micali, A., et al. (eds.) Clifford Algebras and Their Applications in Mathematical Physics, pp. 57–63. Kluwer, Dordrecht (1992)

    Google Scholar 

  13. Mourrain, B., Stolfi, N.: Computational symbolic geometry. In: White, N.L. (ed.) Invariant Methods in Discrete and Computational Geometry, pp. 107–139. Reidel, Dordrecht (1995)

    Google Scholar 

  14. Riesz, M.: Clifford Numbers and Spinors, 1958. Kluwer, Dordrecht (1993). From lecture notes made in 1957–1958, edited by Bolinder, E. and Lounesto, P.

    Google Scholar 

  15. Rosenhahn, B., Sommer, G.: Pose estimation in conformal geometric algebra I, II. J. Math. Imaging Vis. 22, 27–70 (2005)

    Article  MathSciNet  Google Scholar 

  16. Ryan, J.: Conformal Clifford manifolds arising in Clifford analysis. Proc. R. Ir. Acad. A 85, 1–23 (1985)

    MATH  Google Scholar 

  17. Selig, J.M.: Geometrical Methods in Robotics. Springer, New York (1996)

    MATH  Google Scholar 

  18. Sommer, G., Rosenhahn, B., Perwass, C.: Twists—an operational representation of shape. In: Li, H., et al. (eds.) Computer Algebra and Geometric Algebra with Applications. LNCS, vol. 3519, pp. 278–297. Springer, Berlin (2005)

    Google Scholar 

  19. White, N.: Grassmann–Cayley algebra and robotics applications. In: Bayro-Corrochano, E. (ed.) Handbook of Geometric Computing, pp. 629–656. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London

About this chapter

Cite this chapter

Li, H. (2010). Parameterization of 3D Conformal Transformations in Conformal Geometric Algebra. In: Bayro-Corrochano, E., Scheuermann, G. (eds) Geometric Algebra Computing. Springer, London. https://doi.org/10.1007/978-1-84996-108-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-108-0_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-107-3

  • Online ISBN: 978-1-84996-108-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics