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Summary. We investigate a special class of cellular automata (CA) evolving in a
environment filled by an electromagnetic wave. The rules of the Conway’s Game of
Life are modified to account for the ability to retrieve life-sustenance from the field
energy. Light-induced self-structuring and self-healing abilities and various dynamic
phases are displayed by the CA. Photo-driven genetic selection and the nonlinear
feedback of the CA on the electromagnetic field are included in the model, and
there are evidences of self-organized light-localization processes. The evolution of
the electromagnetic field is based on the Finite Difference Time Domain (FDTD)
approach. Applications are envisaged in evolutionary biology, artificial life, DNA
replication, swarming, optical tweezing and field-driven soft-matter.

1 Introduction

The link between light and the development of complex behavior is as much subtle
as evident. Examples include the moonlight triggered mass spawning of hard corals
in the Great Barrier[1], or the light-switch hypothesis in evolutionary biology [2],
which ascribes the Cambrian explosion [3] to the development of vision.
Developing simple mathematical models accounting for the interaction between a
complex system and electromagnetic radiation, while stressing self-organization and
collective dynamics, is an interesting and original enterprise. The basic idea is iden-
tifying the most limited set of ingredients including, on one hand, the electromag-
netic origin of light (i.e., not limiting to ray-tracing and similar techniques) and,
on the other hand, a minimal description of a complex system affected by illumi-
nation. Such an approach necessarily leads to extremely simplified and un-realistic
theoretical representions, but these are expected to be the starting point for more
complicated treatments for problems like DNA replication and accumulation un-
der intense fields [4, 5], swarming [6], or nonlinear optics of complex soft-materials.
[7, 8, 9, 10, 11, 12]. Furthermore practical realizations of these models could be
realized by using light-controlled chemical reactions [13, 14].

Here we consider the way the appearance of photosensivity affects the dynam-
ics, the emergent properties and the self-organization of a community of interacting
agents, specifically, of cellular automata (CA). CA are historically the most funda-
mental paradigm of artificial life (see, e.g., [15]); in this work the renowned Conway’s
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Game of Life [16, 17] is coupled to Maxwell’s equations. This is the first example of
photosensitive CA.

2 The model

Our approach is based on two evolutionary problems: Maxwell equations for the
EM field and the Game of Life (GOL) for the CA. The latter is represented by
an ensemble of squares in a 2D box (or cavity) that can be occupied by a living
cell (LC, symbol 1), or not (symbol 0); each cell has eight neighbors. The CA
evolution is made by a series of temporal steps obeying the GOL rules: (i) if a LC
has 0, 1, 4, 5, 6, 7 or 8 occupied neighbors, it dies (loneliness or overcrowding); (ii) if a
LC has 2 or 3 occupied neighbors, it survives to the next step; (iii) if an unoccupied
cell has 3 living neighbors, it becomes occupied (self-replication). In addition we
assume the following rule: (iv) if a LC has collected enough energy from the EM
field it survives. This is modeled by determining the EM energy E (see below) in the
automaton square and calculating a quantity P , which is the fraction of E that the
CA is able to use for life-sustenance. P obeys the equation (one for each LC)

dP

dt
= −

P(t)

T
+

η

T
E(t), (1)

where η is the efficiency (P = ηE in the steady state) and T is the dissipation rate,
or memory time. Indeed we include a power consumption mechanism for the stored
EM energy. We assume that (a) if a LC dies, it looses all its energy, (b) if P is
greater than a threshold value Pth, the LC survives independently on the number
of living neighbors.
For a fixed efficiency η, the CA evolution depends on the available EM energy;
however simple scaling arguments (as outlined below) show that one can use a
single dimensionless parameter the irradiance J . If J = 0 the CA is “blind”, as the
standard GOL, conversely, as J increases the effect of the EM field grows.

2.1 Electromagnetic field equations

For a 2D cavity (with perfect mirrors as boundaries), with edge L, Maxwell equations
are written in the TE polarization (i.e. only the fields Ex,Hy, Hz are not vanishing)
as

∂zHy − ∂yHz = ǫrǫ0∂tEx ∂y,zEx = −µ0∂tHy,z. (2)

To each element of the CA is associated a square of material, whose electromagnetic
response is determined by the relative dielectric permittivity ǫr. Since we are inter-
ested in the light-driven CA complex dynamics, we initially neglect any feedback
mechanism of the CA on the field. This is the case of the “transparent CA”, which
corresponds to take ǫr ∼= 1 and neglect their light absorption. We will account for
the nonlinear feedback of the CA on the field in a later section of this chapter.
Each CA element is mapped to a square with edge LCA << L. The energy E in eq.
(1) is given by

E =

∫
cell

σE2

xdxdy (3)
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while being σEx the Ohmic current and σ is the conductivity. For the EM evolution
we adopt the Finite Difference Time Domain approach[18] and take a monochro-
matic field with angular frequency ω; this is generated by an oscillating dipole placed
in the middle of the cavity, which is switched on for a limited time-slot (10 opti-
cal cycles). The corresponding seeding current is sinusoidal with period 2π/ω and
amplitude J .

2.2 Parameters

Straightforward rescaling of the relevant equations (1) and (2) shows that the dimen-
sionless parameters ruling the dynamics are: ωT , the time constant (i.e. the memory)
of each CA element expressed in units of the inverse angular frequency; ωtCA, the
time interval between each CA evolutive stage; kLCA, the spatial extension of each
CA element in units of the inverse wavenumber k−1, with k = ωc and c the vacuum
light velocity; kL, the spatial extension of the cavity; κ = Pth/Eλ, the ratio between
the threshold energy for the CA and a reference energy Eλ = ηJ2/σk2. Without
loss of generality, we can fix σ and Pth to any value and change J (expressed in
dimensionless units hereafter) to modulate the effect of the EM field on the CA
dynamics. Here we choose units such that ω = 1, ωtCA = 1, kLCA = 1, kL = 100
and use T and J as control parameters.

3 Field and CA evolution

We consider the simultaneous EM-CA evolution by starting from a random config-
uration of 100× 100 CA elements in the box. We show in Fig.1 various snapshots at
different t of the EM field that, being initially generated in the middle of the struc-
ture, progressively fills the cavity. We show (for T = 10) in Fig.2 various snapshots
of the CA with J = 1, in Fig. 3 for J = 5, and in Fig. 4 for J = 50. We show in
Fig.5 three snapshots of the EM field in the cavity with the corresponding CA dis-
tribution. In the early stages the CA is disordered, while a complex pattern appears
at long times; this is largely affected by the degree of photo-sensitivity determined
by the parameter J .

4 Stationary properties of the CA

The various CA phases can be characterized by the number of LC; this is quantified
by the relative life index (RLI) m, which is calculated by assigning an Ising spin σ
with value “-1” to 0 and a “+1” to 1. The RLI is the average value of σ over all the
CA. A configuration with many 0s exhibits negative values of m (m = −1 for all
0), while m = 1 for all LC. In the 3D plot of m Vs T and J , three regions can be
identified (Fig.6a). At very low irradiance (small efficiency or low EM intensity) the
final population is organized as in the standard GOL (Fig.6b): it is characterized
by small-size unconnected communities of LC (blind phase). Two additional regimes
are found while increasing J : (i) a glassy phase (where m = 0) with regular domains
separated by various defects (Fig.6c); (ii) a region where the CA is frozen in a
large disordered configuration with m > 0 (Fig.6d). In the glassy phase (plateau
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Fig. 1. (Color online) Snapshots of the field evolution in the cavity for various t.

Fig. 2. (Color online) Snapshots of the CA evolution in the cavity for various t at
J = 1 (T = 10).

in Fig.6a), the CA is not sensible to any increase of J . In this regime the EM
field sustains a large amount of LC, but their number is frustrated by the internal
self-organization. This is true as far as the region with m > 0 is entered, where an
explosive growth of the LC with the irradiance (and the memory time) is found; this
is the evolved phase. The existence of this transition is a result of the competition
between the GOL rules and the effective employment of the EM energy for life-
sustenance.

5 Dynamics

In figure 7 we show the time evolution of m for increasing J at a fixed memory.
Starting from the same random CA, different histories are determined by EM field.
In the blind phase, the CA rapidly evolve to a small number of LC separated in
isolated communities (see [17]). At sufficiently high fluence, the RLI overshoots and
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Fig. 3. (Color online) Snapshots of the CA evolution in the cavity for various t at
J = 5 (T = 10).

Fig. 4. (Color online) Snapshots of the CA evolution in the cavity for various t at
J = 50 (T = 10).

Fig. 5. (Color online) Photosensitive cellular automata. Electromagnetic field
distribution in the square cavity at different time instants (from left to right,
t = 550, 1210, 33000). The contemporary CA distribution (a small white box for
each LC) is superimposed to the field, only its bottom-half is shown. (parameters
T = 0.1, J = 1100)
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Fig. 6. (Color online) Relative Life Index Vs irradiance and memory. The panels on
the right show three long-time (t = 4000) CA configurations with the corresponding
parameters.

Fig. 7. (Color online) Life index Vs time for increasing irradiance (here T = 1).

then decays to zero. This implies that the EM field favors the life of a large number of
CA; however this is sustainable for long times only at very high irradiance (evolved
phase); in the other regimes the population steadily decays to m = 0.
Figure 8 shows the autocorrelation function averaged over all the CA:

φ(τ ) = 〈

∫
σi(t+ τ )σi(t)dt〉CA, (4)

which is normalized such that φ(0) = 1. When increasing the strength of the in-
teraction with the EM field from the blind GOL (J ∼= 0), the CA first display a
disordered dynamical phase (m ∼= −1 and φ ∼= 0), then a glassy region (where m = 0
and φ ∼= 0.8). In the evolved phase (m ∼= 1), φ ∼= 1 denotes a frozen configuration.
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Fig. 8. (Color online) Autocorrelation at τ = 4000.

6 Self-healing after a catastrophic event

We then consider the reaction of the photosensitive CA to “catastrophic events”. We
let the system evolve to a stationary state and then we “kill” all the cells occupying
a square in the middle of the box and with size L/2 (see figure 9). In the blind phase
the system does not react to this event, and the RLI is reduced. Conversely, in the
glassy and in the evolved phases, the system rapidly restores the number of LC; at
high fluences this is also accompanied by an overshoot of the RLI, which decays to
zero in the glassy phase.

7 Topology and self-organization

To characterize self-organization we count the number of edge-connected objects
(or communities) in the large time (t = 4000) CA configuration . Figure 10 shows a
three-dimensional plot of the number of edge-connected regions versus the irradiance
and the memory time. In the blind phase, one has a large number of unconnected
very-small communities with m ∼= −1. In the glassy phase, many connected regions
with m = 0 are found. In the evolved phase (m > 0), the CA is organized into
a small number of large communities. Specific transition regions can be identified
(peaks in Fig.10, brighter lines in Fig. 11) and these are characterized by tiny ranges
of the parameters with a huge number of small unconnected communities. Indeed,
the transition from the glassy phase to the evolved one is driven by the breaking of
the almost regular domains (see panels in Fig.11). Correspondingly the number of
communities first increases (in Fig.11 they change from 189 to 492) and then rapidly
decreases in correspondence to the formation a large amorphous but connected CA
at high irradiance.
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Fig. 9. (Color online) Self-healing after a catastrophic event. Relative life index Vs
time for various irradiances J (not all values of J for the reported lines are shown)
in the presence of the abrupt killing of the living cells in the middle area of the box
(at t = 2000, here T = 1).

Fig. 10. (Color online) Number of edge-connected regions Vs memory time and
irradiance.

8 Introducing a genetic code and inheritance

One can argue if the photoreception ability can favor some evolution of the CA
toward novel species. The simplest mechanism to be considered is that based on
natural selection, such that one assume that a “gene” responsible for photoreception
is randomly distributed among the LC. Those LC not displaying such a gene are
blind (they obey to the simple GOL rules); the others behave as described above and
feel the presence of the EM field. When a new LC is born from the three neighbors
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Fig. 11. (Color online) Colormap of the number of edge-connected regions; the three
dots correspond to the CA panels on the right; connected regions are discriminated
by different colors.

[GOL rule (iii) above], it inherits the photoreceptive gene if this is present in two
or three of the parents, otherwise it is blind. We find that, as far as no EM field is
present, the photosensitive population balances the blind one. When the EM field
is introduced, the PLC rapidly supersede the BLC. Figure 12b shows the large-time
state of the CA when starting from a balanced configuration (Fig. 12a). Letting np

the number of PLC, and nb that of the BLC, we show the ratio g = (np−nb)/(np+nb)
in Fig.13 (left axis) Vs time. In the transparent case, g rapidly reaches the unity.

(a) Initial (b) Transparent (c) Absorbing

Fig. 12. (Color online) Photosensitive CA with genetic code. (a) Initial configura-
tion with same number of blind (red, darker) and photosensitive (white) LC; (b) final
configuration for the transparent CA; (c) as in (b) for the absorbing CA (T = 0.1,
J = 50, t = 1000).
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9 Energy dissipating CA

The “gene” selection process implies that PLC are favored in the presence of an
external EM field. The situation however is different if one takes into account the
fact that the PLC absorb energy: as their number grows the life-sustaining field is
reduced and the selection process is frustrated. In figure 12 we compare the trans-
parent case with the absorbing one (σ = 105 Sm−1 for the CA material). In the
presence of dissipation the fraction of photosensitive agents is reduced, however,
surprisingly enough, it stays constant with time after an initial build-up transient.
When considering the snapshots of the EM profile during the CA evolution, one
readily realizes that, at variance with transparent case (where the EM wave is de-
localized in the entire cavity, see Fig. 5), the field displays a certain degree of local-
ization. Indeed regions with high intensities appears, circumvented by various LC
(insets in Fig.13). The effect can be quantified by calculating the EM localization
length lEM (see, e.g., [19]), reported in Fig.13 (right axis). Notably, after a transient
over which the field fills the cavity (up to t ∼= 250), lEM starts to decrease with time,
while g stays constant. As the PLC dissipate energy, the CA is able to localize light
(insets in Fig. 13) in order to preserve the intensity level.

Fig. 13. (Color online) Left scale: fraction of PLC Vs time averaged over 100 initial
balanced random condition for transparent (dashed) and absorbing (full line) CA.
Right scale: field localization length Vs time (100 initial random configuration) for
the absorbing CA. The insets show the EM field distributions (for the absorbing case
with the CA superimposed) at two instants (⊗ and ∗) unveiling the self-organized
dynamic wave localization (J = 50, T = 1).
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10 Conclusion

Within the proposed model of photosensitive (artificial) life, one finds that the de-
velopment of photoreception largely affects not only the number of living automata
but also their organization. If the storage time is too small, the population cannot
grow; it wastes energy more quickly than the time needed to collect it. Conversely,
an explosive growth is found at the expense of large-scale self-organization, which
appears only after a critical degree of photosensibility has been developed. Self-
healing abilities after catastrophic events and dynamical hierarchies are triggered
by the EM radiation.

When introducing a genetic-like competition between photosensitive and blind
CA, the former are favored by the irradiation. If the CA energy dissipation is in-
cluded, the highly nonlinear EM-CA system results into a self-organized field local-
ization effect, such that the EM localization length decreases with time in order to
keep constant the number of photosensitive agents.

The proposed model shows that the competition between the internal rules of
a complex system and the development of new abilities (as vision) nurtures abrupt
evolutive steps and collective behavior.
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Phys. Rev. Lett. 86, 1646 (2001).

15. M. A. Bedau, TRENDS Cogn.Sci. 7, 505 (2003).
16. M. Gardner, Sci. Am. 223, 120 (1970).
17. S. Wolfram, Rev.Mod.Phys. 55, 601 (1983).
18. A. Taflove and S. C. Hagness, Computational Electrodynamics: the finite-

difference time-domain method (Artech House, London, 2000), 3rd ed.
19. S. Gentilini, A. Fratalocchi, A. Angelani, G. Ruocco, and C. Conti, Opt.Lett.

34, 130 (2009).


	The Enlightened Game of Life
	Claudio Conti

