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Summary. The B36/S125 (or “2x2”) cellular automaton is one that takes place
on a 2D square lattice much like Conway’s Game of Life. Although it exhibits high-
level behaviour that is similar to Life, such as chaotic but eventually stable evolution
and the existence of a natural diagonal glider, the individual objects that the rule
contains generally look very different from their Life counterparts. In this article,
a history of notable discoveries in the 2x2 rule is provided, and the fundamental
patterns of the automaton are described. Some theoretical results are derived along
the way, including a proof that the speed limits for diagonal and orthogonal space-
ships in this rule are ¢/3 and ¢/2, respectively. A Margolus block cellular automaton
that 2x2 emulates is investigated, and in particular a family of oscillators made up
entirely of 2 x 2 blocks are analyzed and used to show that there exist oscillators
with period 2¢(2% — 1) for any integers k, £ > 1.

1 Introduction

One cellular automaton that has drawn a fair amount of interest recently is
the one that takes place on a grid like Conway’s Game of Life, except dead
cells are born if they have 3 or 6 live neighbours, and alive cells survive if they
have 1, 2, or 5 live neighbours — this information is conveyed by its rulestring
“B36/S125”. This rule exhibits many qualities that are similar to those of
Life — for example, evolution seems unpredictable and random patterns tend
to evolve into “ash fields” consisting of several small stable patterns (known
as still lifes) and periodic patterns (known as oscillators).

The B36/S125 automaton has become known as “2x2” because of the fact
that it emulates a simpler cellular automaton that acts on 2 x 2 blocks of
cells. In particular, this means that patterns that are initially made up of
2 x 2 blocks will forever be made up of 2 x 2 blocks under this evolution rule.
Because of the simplicity of the emulated block cellular automaton, it has
many properties in common with elementary cellular automata [I, 2] and in
particular emulates Wolfram’s rule 90 [3].
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Although the rough behaviour and statistics of 2x2 are similar to those
of Life, the patterns of 2x2 have completely different structure and thus are
interesting in their own right. Furthermore, many questions that have been an-
swered about Life remain open in 2x2, such as whether or not it contains guns
or replicators. It has a basic ¢/8 diagonal glider that occurs fairly commonly,
though it is larger than the standard Life glider and is thus more difficult to
construct. The first infinitely-growing pattern to be discovered was a wick-
stretcher based on the glider which, despite its simplicity, was not stumbled
upon until June 2009. This wickstretcher is displayed in Figure [2| with alive
cells in black and dead cells in white.
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Fig. 1: A large still life Fig. 2: The wickstretcher

Other spaceships were found via computerized searches carried out by Alan
Hensel, Dean Hickerson, David Bell, and David Eppstein in the 1990s. One of
the most important spaceship discoveries was a ¢/3 diagonal spaceship, which
showed that it is possible for spaceships to travel faster in the 2x2 universe
than in the standard Life universe, despite most of the easy-to-find spaceships
being quite slow. We will see that ¢/3 is the diagonal speed limit in 2x2, much
like ¢/4 is the diagonal speed limit in Life. Several derived results will also
apply to other Life-like cellular automata, and we will note when this is the
case, although our focus and motivation will be the 2x2 rule.

2 Ash and Common Patterns

One of those most interesting aspects of 2x2 is the large variety of still lifes and
oscillators that appear naturally as a result of evolving randomly-generated
starting patterns (known as soup). Many simple still lifes are familiar from
the standard Life rules, such as the tub, beehive, aircraft carrier, loaf, and
pond. More commonly-occurring, however, are simple “sparse” still lifes that
are not stable in Life, such as a horizontal or diagonal row of 2 cells. Table
shows the 20 most commonly-occurring still lifes in 2X2EI

LComputed by evolving 22,846,665 random patterns of size 20 x 20 and ini-
tial density 37.5%. A total of 255,689,477 (non-distinct) still lifes were cata-
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Table 1: The 20 most common naturally-occurring still lifes in the 2x2 rule
and their approximate frequency (out of 1.000) relative to all still lifes

# Pattern Rel. Frequency # Pattern Rel. Frequency
1 - 6.076 x 107" »
. . 11 . 8.895 x 10
2 . 2.130 x 10
3 = 5.038 x 102 12 == 7.738 x 1074
4 4.808 x 1072 13 6.618 x 1074
5 7 2.964 x 1072 14 ¥ 5.604 x 1074
6 2.575 x 102 15 3.640 x 10~
7 9.784 x 1073 16 2.831 x 10~
8 - 4.232 x 1073 17 o 2.487 x 1074
9 4.077 x 1077 18 e 1.385 x 10~
10 1.949 x 1073 19 T 1.053 x 1074
20 e 7.571 x 107

Observe that the fact that cells stay alive if they have only one live neigh-
bour results in an abundance of small still lifes, most of which are made up
of islands, with each island being a chain or loop of a few cells. This leads
to a simple grammar for constructing large still lifes — see Figure [1} The
number of distinct strict still lifes with n cells for n = 1,2,3,... is given
by 0,2,1,3,4,9,10,27,48,126, .. El Compare this with the corresponding se-
quence for Life, which is 0,0,0,2,1,5,4,9, 10,25, .. El

The oscillators that occur naturally in 2x2 do not occur in Life. The ma-
jority of common oscillators have period 2 or 4, but some small patterns give
rise to very high-period oscillators. For example, the fourth most common os-
cillator is simply the stairstep hexomino in one of its phases, yet it has period
26. The thirteenth most common oscillator, which it might be appropriate to
name the “decathlon,” has period 10 and evolves out of a horizontal row of 5
adjacent cells, much like the period 15 “pentadecathlon” of Life evolves out
of a horizontal row of 10 adjacent cells. Oscillators with periods 14 and 22 are
also relatively frequent, as demonstrated by Table

logued as a result. Statistics compiled by the Online Life-Like CA Soup Search.
http://www.conwaylife.com/soup

“Sloane’s A166476 — the still lifes with 9 or fewer cells are shown in Appendix I

%Sloane’s A019473

“Based on data from the Online Life-Like CA Soup Search. A total of 11,270,020
(non-distinct) oscillators were catalogued.


http://www.conwaylife.com/soup
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Table 2: The 20 most common naturally-occurring oscillators in the 2x2 rule
and their approximate frequency (out of 1.000) relative to all oscillators

# Pattern Period Rel. Freq. # Pattern Period Rel. Freq.

1 e 2 4824x107" 11 #E 2 9.330x107°2
2 AR 2 2.170 x 107+ 12 s 2 7766 x 10~3
3 ":= 2 5741 x 1072 et s
- 13 10 5188 x 10~
4 = 26 5.515 x 1077 - 5
: 14 = 2 2.042x 107
5 4 3.718x 1072 ..
e 15 2 1.633x107°
6 e 14 3.364 x 1072 5
: 16 . 2 1.559 x 10~
7 4 3.104x1072 ]
8 i e S 2 14 1.182x107°
9 4 1766 x10-2 18 2 9.618x107*
10 4 1.745 x 10~2 19 6 9.539 x 1074
20 ik 22 4.423x107*

The only other particularly notable patterns that have been known to
appear spontaneously from random soup are a fairly common ¢/8 diagonal
glider and a related ¢/8 wickstretcher. Although the glider itself was known
of by no later than 1993, the wickstretcher, which works simply by placing
the glider next to a diagonal wick, was not found until June 2009. In fact, the
¢/8 wickstretcher and its slight modifications are currently the only known
infinitely-growing patterns in 2x2.

3 Oscillators and Spaceships

Beyond the standard oscillators that appear naturally, many oscillators of
period 2 through 4 have been constructed by hand and computer search by
Alan Hensel, Dean Hickerson, and Lewis Patterson over the years. In 1993,
Hensel discovered the first known oscillator with odd period, the small period
5 pattern shown in Figure |3] David Bell soon thereafter noticed that it can
be combined with itself and extended in a variety of different ways, creating
the first known extensible oscillator. Hensel discovered the first known period
3 oscillator in 1994, and Hickerson found the first known period 11 and 17
oscillators later that same year. To date, the only odd periods for which there
are known oscillators are 3, 5, 11, and 17, which shows that odd-period oscilla-
tors seem to be much more difficult to construct in this rule than even-period
oscillators. We will see later that there is an infinite family of even periods
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that are easily realized by simple block oscillators. The least period for which
there is no known oscillator is 7, while the least even period for which there
is no known oscillator is 18.

Fig. 3: The first known oscillators of period 3, 5, 11, and 17, respectively

The ¢/8 diagonal glider is the only spaceship that has ever been seen to
occur naturally in 2x2, though several others have been found via computer
search. In February 1994, Hensel found the first such spaceship — the ¢/3
orthogonal pattern shown in Figure[d] He also found the next three spaceships,
which were orthogonal with speed ¢/3, ¢/3, and ¢/4. As a result of the relative
ease of finding slow spaceships in this rule, it was initially suspected that
it does not contain spaceships that travel as fast as their Life counterparts
(¢/2 orthogonally and ¢/4 diagonally). However, David Eppstein found a ¢/2
orthogonal spaceship in October 1998 using his gf ind program [4], and several
others have been found since then (see Appendix I). Hickerson found the
first ¢/4 diagonal spaceship in 1999. Eppstein has since found a ¢/3 diagonal
spaceship, which shows that it is possible for spaceships in 2x2 to travel faster
than spaceships in Life.

Fig. 4: The first discovered spaceship Fig. 5: The ¢/3 diagonal spaceship
other than the ¢/8 glider

With the discovery of the ¢/3 diagonal spaceship comes the natural ques-
tion of what the speed limits in 2x2 are for spaceships. It was proved by
Conway in the early 1970s that spaceships in Life can not travel faster than
¢/2 orthogonally or ¢/4 diagonally. Using similar methods it is possible to
prove that spaceships in 2x2 can not travel faster than ¢/2 orthogonally or
¢/3 diagonally.
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Theorem 1. Spaceships in 2z2 can not travel faster than ¢/3 diagonally or
¢/2 orthogonally.

Proof. The result for diagonal spaceships is proved first. Assume the contrary;
assume that there exists a spaceship that travels diagonally at a speed faster
than ¢/3. It then must contain a phase such that if that phase is on or to the
left of the diagonal line given by the cells A, B, C, D, E, and F in Figure[f]in
generation 0, then the spaceship is not entirely on or to the left of the diagonal
line defined by the cells V and Y in generation 3. We can thus assume without
loss of generality that the cell X is born in generation 3. Cells V, W, and Y
then must be alive in generation 2. It is clear that V and Y can not already
be alive in generation 1, so they must have three alive neighbours each in
generation 1. It follows that each of C, D, U, W, and Z must be alive in
generation 1.

A
B UV X
cCwy
N O D z
P S E

F

Fig. 6: If a spaceship is on or to the left of the line defined by A, B, C, D, E, and
F in generation 0, supposing X is alive in generation 3 gives a contradiction

Now observe that, because cell W is alive in generation 1 and generation
2, and we know that its four neighbours C, D, U and Z are alive in generation
1, W must have a fifth alive neighbour in generation 1: O. We will now derive
a contradiction by showing that it is impossible for O to be alive in generation
1.

For U, W, and Z to be alive in generation 1, it is necessary that B, C,
D, E, M, O, and S all be alive in generation 0. For C and D to survive to
generation 1, N and P must also be alive in generation 0; otherwise C and D
have only four alive neighbours. In particular, this implies that C, D, M, N,
P, and S must all be alive in generation 0, which implies that O has at least
6 alive neighbours. Since O also must be alive in generation 0, it can not be
alive in generation 1 — a contradiction. It follows that the spaceship must be
on or to the left of the diagonal line defined by the cells V and Y in generation
3, which shows that it can not travel faster than ¢/ 3E|

To see the result for orthogonal spaceships, we perform a similar argument,
but instead assume that the spaceship is on or below the line of slope —1/2

5In 1994, Dean Hickerson used a similar method to prove that spaceships in the
rule B3/S135 can not travel faster than ¢/3 diagonally or 2¢/3 orthogonally.
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Fig. 7: If a spaceship is on or below the line defined by A, B, C, D, E, and F in
generation 0, supposing X or Y is alive in generation 2 gives a contradiction

defined by cells A, B, C, D, E, and F in Figure [7] in generation 0. Assuming
that orthogonal spaceships can travel faster than ¢/2 orthogonally, it must be
possible for either X or Y to be alive in generation 2. However, the only one
of Y’s neighbours that can possibly be alive in generation 1 is N, so Y can
not be alive in generation 2. Similarly, the only of X’s neighbours that can be
alive in generation 1 are B and N, so X can not possibly be alive in generation
2. This shows that neither X nor Y can be alive in generation 2, so spaceship
speeds are limited to ¢/2 orthogonally. O

Because a ¢/3 diagonal spaceship is already known, as are several ¢/2
orthogonal spaceships, the speed limit question for 2x2 has been answered.
Additionally, the proof of Theorem [I| only relies on a couple of properties of
2x2 and so the upper bounds apply to various other rules as well. In fact, the
upper bounds apply to any of the 2'4 = 16384 rules in which birth occurs
when a cell has 3 neighbours but does not occur for 2 or fewer neighbours.

Finally, it is worth noting that the second half of the proof of Theorem
implies not only the ¢/2 speed limit result for orthogonal spaceships, but also
that any spaceship that travels a cells vertically for every b cells horizontally
(if such a spaceship exists) can not travel faster than max{a,b}c/(2a+ b)ﬂ In
particular, this captures the ¢/3 diagonal speed limit and says that knightships
(which travel two cells vertically for every one cell horizontally), if they exist,
can not travel faster than 2¢/5.

4 As a Block Cellular Automaton

One of the most interesting properties of 2x2 is that it emulates a simpler
cellular automaton that acts on 2 x 2 blocks of cells. A bit more specifically,
it emulates the block cellular automaton that makes use of the Margolus
neighbourhood and evolves according to the six rules given by Figure

5David Eppstein was aware of this speed upper bound for rules in which birth
occurs when a cell has three live neighbours back in 1999 and he used it as an
alternative method of proving the ¢/3 upper bound for diagonal spaceships.
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Fig. 8: The block cellular automaton emulated by 2x2

By saying that 2x2 emulates a Margolus block cellular automaton, we mean
that the resulting block appears at the center of the original four blocks. Thus,
patterns that are originally made up of 2 x 2 blocks will forever be made up of
2 x 2 blocks, but the block partition will be offset diagonally by one cell in the
odd generations from the even generations. Of course, 2x2 is not the only Life-
like cellular automaton that emulates a Margolus block cellular automaton;
such a cellular automaton is emulated if and only if the rule satisfies the
following four conditions:

Birth occurs for 3 neighbours if and only if survival occurs for 5 neighbours.
Birth occurs for 4 neighbours if and only if survival occurs for 4 neighbours.
Birth occurs for 5 neighbours if and only if survival occurs for 6 neighbours
if and only if survival occurs for 7 neighbours.

e Birth occurs for 1 neighbour if and only if birth occurs for 2 neighbours if
and only if survival occurs for 3 neighbours.

More succinctly, a Life-like cellular automaton emulates a Margolus block
cellular automaton if and only if, in its rulestring, B3 = S5, B4 = S4, B5
= S6 = S7, and B1 = B2 = S3. 2x2 can be seen to satisfy these conditions
because 4 is neither a birth condition nor a survival condition, 5 is not a birth
condition and 6 and 7 are not survival conditions, 3 is a birth condition and
5 is a survival condition, and 3 is not a survival condition and 1 and 2 are
not birth conditions. There are 2'2 = 4096 Life-like cellular automata that
emulate 26 = 64 different Margolus block cellular automata. The 64 Life-like
cellular automata from B3/S5 to B3678/S0125 all emulate the same Margolus
block cellular automaton given by Figure [§]

In fact, it was noticed by David Eppstein in 1998 that the Margolus block
cellular automaton that 2x2 emulates also emulates itself via 2 x 2 blocks
of 2 x 2 blocks, but with a slowdown of one simulated generation per real
generation. That is, each 2 x 2 block in Figure |8 can be replaced by the
corresponding 4 x 4 block as long as it is understood that the transition time
indicated by the arrows is two generations instead of one.

It follows naturally that 8 x 8 blocks can be used to simulate 4 x 4 blocks,
again doubling the number of real generations per simulated generation. In
general, 2% x 2% blocks can be used to simulate 2x2 blocks, with each simulated
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generation requiring 2! real generations. Because the 2 x 4 rectangle is an
oscillator with period 2, it follows that the 4 x 8 rectangle is an oscillator with
period 4, the 8 x 16 rectangle is an oscillator with period 8, and in general the
2F x 2k+1 rectangle is an oscillator with period 2*. This was the first known
proof that 2x2 contains oscillators of arbitrarily large period — we will see
another proof (also related to 2 x 2 block oscillators) in the next section.

Fig. 9: An example of 4 x 4 blocks (top) taking two generations to emulate
one generation of a 2 x 2 block pattern (bottom)

One might wonder what types of patterns exist in this block cellular au-
tomaton — after all, it is a simpler rule so perhaps we can prove the existence
of certain types of patterns in 2x2 by simply trying to find interesting block
patterns. However, no block pattern can ever escape its initial “bounding di-
amond,” so we can not hope to find spaceships or infinitely-growing patterns
in this manner. Additionally, because the block partition in even generations
is offset by one cell from the block partition in odd generations, we can’t
hope to find odd-period oscillators. Thus, we investigate an infinite family of
even-period block oscillators.

5 Block Oscillators

One particularly interesting family of oscillators in 2x2 are those that in one
phase are a 2 x 4n rectangle of alive cells for some integer n > 1. For n = 1,
the oscillator has period 2 and simply rotates by 90 degrees every generation.
That is, it starts as a 2 x 4 rectangle, evolves into a 4 x 2 rectangle after one
generation, and then evolves back into a 2 x 4 rectangle after the next gener-
ation. As n increases, these oscillators behave more and more unpredictably.
For n = 2, the oscillator has period 6 as shown in Figure

By simply playing around with Life simulation software, it is not difficult
to compute the period of the 2 x 4n block oscillator for n = 1,2,3,... to
be 2,6,14,14,62, 126, 30, 30,1022, 126, . . ﬂ Other than the fact that each of

"Sloane’s A160657
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Fig. 10: The 2 x 8 period 6 block oscillator

these periods is two less than a power of two, this sequence does not have
any obvious pattern. The following theorem shows that the sequence is in
fact related to a well-studied mathematical phenomenon, albeit one that does
not admit what most people would consider a closed form solution. Before
presenting the theorem, it is perhaps worth noting that B36/S125 is not the
only rule in which these oscillators work; these rectangular oscillators behave
the same in the 22 = 512 rules from B3/S5 to B35678/S012567.

Theorem 2. The period of the 2 x 4n block oscillator is 2(2% — 1), where k is
the multiplicative suborder of 2 (mod (2n + 1))E|

The multiplicative suborder of a (mod b), denoted sordy(a), is defined as
the least natural number %k such that a®* = £1 (mod b). There exists a k
satisfying this condition if and only if GC'D(a,b) = 1. Since 2n + 1 is odd we
know that the k mentioned by Theorem [2] is well-defined. We now sketch a
proof of the theorem.

Proof. The key step in the proof is to notice that each phase of these oscillators
can be described as an XOR of rectangles — that is, an intersection of rectangles
where we keep the sections that consist of an odd number of overlapping
rectangles and we discard the sections that consist of an even number of
overlapping rectangles. For example, Figure shows a phase of the n = 3
block oscillator represented as the XOR of a 2 x 12 rectangle, a 6 x 8 rectangle,
and a 10 x 4 rectangle.

Different phases may require a different number of rectangles to be XORed,
but every phase can always be represented in this way. More important, how-
ever, is the fact that the evolution of the oscillators occurs in a predictable
way when modeled like this. Consider the grid given in Figure which is

8The wvalues of k given by Theorem for n = 1,2,3,... are
1,2,3,3,5,6,4,4,9,6,... (Sloane’s A003558).
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Fig. 11: Generation 6 of the n = 3 block oscillator, depicted as the XOR of a
2 x 12 rectangle, a 6 x 8 rectangle, and a 10 x 4 rectangle

helpful in analyzing the evolution of the block oscillators. The fact that it
resembles the Sierpinski triangle is no coincidence; this block automaton is,
in a sense, emulating the Rule 90 elementary cellular automaton.

The way to read Figure is that that row represents the generation
number and the column represents the size of the rectangle that is being
XORed. The first column represents a 2 x 4n rectangle, the second column
represents a 4 X (4n — 2) rectangle, the third column represents a 6 x (4n —4)
rectangle, and so on. Thus, you “start” in the top-left cell, and that represents
the 2 x 4n rectangle of generation 0. To go to generation 1, go to the next
row, where we see that the only filled in cell is in the second column, which is
the 4 x (4n — 2) column. Thus, generation 1 will just be a filled-in 4 x (4n —2)
rectangle. To see what generation 2 will look like, go to the next row, where
we see that two cells are filled in, corresponding to 2 x 4n and 6 x (4n — 4)
rectangles. Thus, XOR together two rectangles of those sizes (in the sense
described earlier) to get what generation 2 looks like.

Fig. 12: A grid that can be used to determine future phases of the block
oscillators

In order to determine the oscillators’ periods, we must observe that if
we continue to label the columns in the way described, eventually we hit
zero-length rectangles, which does not make a whole lot of sense. Thus, we



12 Nathaniel Johnston

simply ignore any rectangles that are of length zero. But what about rectangles
of negative length? Instead of counting down into negative numbers, start
counting back up. Thus, the columns corresponding to a 2k x (4n — 2(k — 1))
rectangle are given by 2¢(2n+ 1) + k for £ € {0,1,2,...} and 2/(2n+ 1) — k
for ¢ € {1,2,3,...}. To help illustrate this idea, consider the grid given in
Figure which shows the lengths associated with each column in the n =3
case.

onm
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Fig. 13: For 1 < k < 6, the columns marked by the number k£ correspond to
a 2k x (4n — 2(k — 1)) rectangle — columns marked 0 or 7 are ignored

For example, in generation 6, there is a live cell in columns marked “17,
“37, “6” and “7”. The column marked “7” is ignored, and the columns marked
“17, “3”7, and “5” correspond to rectangles of size 2 x 12, 6 x 8, and 10 x 4,
respectively. Generation 6 of the n = 3 oscillator should thus be the XOR of
these three rectangles, which we saw in Figure [11]is indeed the case.

Now, notice that, because the multiplicative suborder of 2 (mod (2n + 1))
is well-defined, there must exist some ¢,m such that 2¢ = m(2n + 1) + 1.
Because 2¢ is even, it must be the case that m is odd. In terms of Figure
this means that there is some row containing only one cell (i.e., one of the rows
labelled 3,7,15,31,...,2¢ —1,...) such that its cell is in a “2n” column (i.e.,
a “6” column in the case of the example provided). This means that, at some
point during its evolution, a 2 X 4n rectangle evolves into a 4n x 2 rectangle.
A simple symmetry argument shows that this must occur at exactly half of
its period.

It follows that the oscillator returns to its original 2 x 4n form in generation
2(2% — 1), where k is the multiplicative suborder of 2 (mod (2n + 1)). Thus,
the period of the 2 x 4n block oscillator must be a factor of 2(2% — 1). It is
not difficult to see that the period must actually be of the form 2(2¢ — 1) for
some integer ¢, so the result follows. O
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Even though there is no known closed form formula for the multiplicative
suborder of a (mod b), it has several simple properties that can be verified
without much difficulty. Importantly, it can be bounded as follows:

b—1
log,(b—1) <sordy(a) < — (1)

The lower bound follows simply by noting that if k = sordy(a), then a* >
b — 1. To see that the upper bound holds, recall that Euler’s theorem says
that a®® =1 (mod b), where ¢(b) is the totient of b. Since ¢(b) < b — 1, the
inequality follows. Also, since ¢(b) = b — 1 exactly when b is prime, we see
that equality is attained on the right in Inequality (I}) only if b is prime.

The following corollary of Theorem |2[ and Inequality follows immedi-
ately.

Corollary 1. Let p be the period of the 2 x 4n block oscillator. Then
2(2n —1) <p < 2"t — 2,

Proof. By simply letting a = 2, b = 2n + 1, and k = sord(a), Inequality
says
log,(2n) <k <n.

Rearranging the inequality gives
2(2n — 1) < 21 2 < onfl _ 9
The result follows from Theorem 2l O

This result provides, for example, a second proof that 2x2 contains oscilla-
tors with arbitrarily large period. In fact, any period of the form 2(2% —1) for
an integer k > 1 is attainable as a 2 x 4n block oscillator by simply choosing
n = 2F=1. Combining this with the period-doubling method of Section |4, we
can construct a block oscillator with period 2¢(2F —1) for any integers k, ¢ > 1
— one such oscillator is a solid rectangle of alive cells of size 2¢ x 2+, Tt is
still an open question whether or not 2x2 is omniperiodic; that is, whether or
not it contains an oscillator of any given period.

Table [3] shows the period of the 2 x 4n block oscillator for several values
of n, as well as the bounds given by Corollary [I] Values for which either of
the bounds are attained have been highlighted.

It is clear via Figure [13|that a 2 x 4n oscillator is a solid rectangle in any
generation of the form 2¢ — 1, where £ is an integer. In fact, the number of
distinct solid rectangles that the oscillator will produce is exactly 2k (or simply
k if you don’t double-count the 90 degree rotations of rectangles that appear
during the second half of the oscillator’s period), where k is the multiplicative
suborder of 2 (mod (2n + 1)) (as in Theorem [2). Thus, if the upper bound
of Theorem [I] is not attained, then there are rectangular blocks of size 2¢ x
(4n — 2(¢ — 1)) for some integer ¢ that are not part of the evolution of the
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Table 3: The period of the 2 x 4n block oscillator, as well as the bounds of
Corollary [1], for small values of n

n 2(2n-1) Period 2°"'-2 n 2(2n-1) Period 2" -2
1 2 2 2 13 50 1022 16382
2 6 6 6 14 54 32766 32766
3 10 14 14 15 58 62 65534
4 14 14 30 16 62 62 131070
5 18 62 62 17 66 8190 262142
6 22 126 126 18 70 524286 524286
7 26 30 254 19 74 8190 1048574
8 30 30 510 20 78 2046 2097150
9 34 1022 1022 21 82 254 4194302
10 38 126 2046 22 86 8190 8388606
11 49 4094 4094 23 90 16777214 16777214
12 46 2046 8190 24 94 4194302 33554430

2 x 4n block oscillator. Table [3| shows us that the smallest example of this
happening is in the n = 4 case because the 2 x 16 oscillator has period 14,
which is less than the upper bound of 30. Indeed, the £ = 3 case of a 6 x 12
rectangle is another oscillator of period 14. This tells us what happens for 28
of the 2(2* —1) = 30 possible nonempty combinations of four rectangles being
XORed together (with an overall 90 degree rotation being allowed). So what
happens to the two missing combinations? Well, if we XOR a 2 x 16 rectangle
with a 10 x 8 rectangle and a 14 x 4 rectangle, we get a seemingly atyptical
period 2 block oscillator that simply rotates 90 degree every generation (see

Figure F_;]

Fig. 14: The XOR of a 2 x 16 rectangle, a 10 x 8 rectangle and a 14 x 4
rectangle has period 2 and rotates by 90 degrees every generation

9In 1993, Dean Hickerson observed that a similar phenomenon occurs in the
n =7 case of a 6 x 24 rectangle XORed with an 18 x 12 rectangle, although it was
unknown whether or not there was a smaller block oscillator that did not turn into
a single rectangle in one of its phases.
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While solid rectangles of size 2 x 4n are always an oscillator, this is not the
case for rectangles of size 2 x (4n—2) — they sometimes evolve into an oscillator
and they sometimes vanish completely. It was shown by Dean Hickerson in
1993 they eventually vanish if and only if n = 2¢ for some integer £ > 0.
Furthermore, he showed that they must vanish by no later than generation
241 To find out what happens when n is not a power of 2, we will make use
of all of the ideas presented so far in this and the previous section.

If n is odd, say n = 2m + 1 for some integer m > 1, then generation 1 of
the oscillator will be a single rectangle of the size 4 x 8m. Since this rectangle
is made up of 4 x 4 blocks, we know from Section [4 that it is an oscillator
with period that is double the period of the 2 x 4m block oscillator. It follows
from Theorem [2| that it has period 4(2* — 1), where k is the multiplicative
suborder of 2 (mod (2m + 1)).

Now let’s suppose n is divisible by 2 but not by 4 — that is, n = 2(2m+1) for
some integer m. Then generation 3 of the oscillator will be a single rectangle
of size 8 x 16m. Since this rectangle is made up of 8 x 8 blocks, we can use the
same logic as earlier to see that this pattern is an oscillator with period that
is quadruple the period of the 2 x 4m block oscillator. That is, it has period
8(2% — 1), where k is the multiplicative suborder of 2 (mod (2m + 1)).

Carrying on in this way, one can easily prove the following result.

Theorem 3. Let n = 2/(2m + 1) for some £,m > 0. If m = 0 then the
2 x (4n — 2) rectangle vanishes in the (271 — 1)*" generation. Otherwise, the
2 x (4n—2) rectangle evolves in the (2°t1 —1)*" generation into a 22 x m2t+3

block oscillator with period 2°Y2(2% — 1), where k is the multiplicative suborder
of 2 (mod (2m + 1)).
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Appendix I: Pattern Collection

14 =, - 17 g,
22 . 26
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Fig. 15: Many oscillators of periods 2 through 60, most of which were found
by Alan Hensel, Dean Hickerson, and Lewis Patterson, with contributions by
David Bell
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Fig. 16: The 104 strict still lifes with 9 or fewer cells, organized by their cell
count

Fig. 17: Several ¢/2 orthogonal spaceships travelling upward: (a) and (b) are
extensible “jellyfish” found by David Bell in December 1999, (c), (d) and
(e) were found by David Eppstein, with (d) being the first discovered ¢/2 in
October 1998
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Fig. 18: Several orthogonal spaceships of various speeds travelling upward
found by David Eppstein, Alan Hensel, and Dean Hickerson
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Fig. 19: Diagonal spaceships of various speeds travelling up and to the right:
the ¢/8 spaceship occurs naturally, the ¢/4 spaceship was found by Dean Hick-
erson in January 1999, and the ¢/3 spaceship was found by David Eppstein
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