Skip to main content

Direct Neural Control of Anatomically Correct Robotic Hands

  • Chapter

Part of the book series: Human-Computer Interaction Series ((HCIS))

Abstract

This chapter presents a potential method of achieving dexterous control of a prosthetic hand using a brain-computer interface (BCI). Major control successes with invasive BCIs have been achieved by recording the activity of small populations of neurons in motor areas of the cortex. Even the activity of single neurons can be used to directly control computer cursors or muscle stimulators. The combination of this direct neural control with anthropomorphic hand prostheses has great promise for the restoration of dexterity. Based on users’ requirements for a functional hand prosthesis, a fully anthropomorphic robot hand is required. Recent work in our laboratories has developed two new technologies, the Neurochip and the Anatomically Correct Testbed (ACT) Hand. These technologies are described and some examples of their performance are given. We conclude by describing the advantages of merging these approaches, with the goal of achieving dexterous control of a prosthetic hand.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Afshar P, Matsuoka Y (2004) Neural-based control of a robotic hand: Evidence for distinct muscle strategies. IEEE Int Conf Robot Autom 2:4633–4638

    Google Scholar 

  • Azemi E, Stauffer WR, Gostock MS, et al. (2008) Surface immobilization of neural adhesion molecule L1 for improving the biocompatibility of chronic neural probes: In vitro characterization. Acta Biomater 4:1208–1217

    Article  Google Scholar 

  • Biran R, Martin DC, Tresco PA (2005) Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp Neurol 195:115–126

    Article  Google Scholar 

  • Bluethmann W, Ambrose R, Diftler M, et al. (2003) Robonaut: A robot designed to work with humans in space. Auton Robot 14:179–197

    Article  MATH  Google Scholar 

  • Carmena JM, Lebedev MA, Crist RE, et al. (2003) Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol 1:193–208

    Article  Google Scholar 

  • Chapin JK, Moxon KA, Markowitz RS, et al. (1999) Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci 2:664–670

    Article  Google Scholar 

  • Cui XT, Zhou DD (2007) Poly(3) (4-ethylenedioxythiophene) for chronic neural stimulation. IEEE Trans Neural Syst Rehabil Eng 15:502–508

    Article  Google Scholar 

  • Deshpande A, Balasubramanian R, Lin R, et al (2008) Understanding variable moment arms for the index finger MCP joints through the ACT hand. IEEE Int Conf Robot Autom 776–782

    Google Scholar 

  • Deshpande A, Ko J, Matsuoka Y (2009) Anatomically correct testbed hand control: Muscle and joint control strategies. IEEE Int Conf Robot Autom 2287–2293

    Google Scholar 

  • Evarts EV (1968) Relation of pyramidal tract activity to force exerted during voluntary movement. J Neurophysiol 31:14–27

    Google Scholar 

  • Fetz EE (1969) Operant conditioning of cortical unit activity. Science 163:955–958

    Article  Google Scholar 

  • Fetz EE (2007) Volitional control of neural activity: Implications for brain-computer interfaces. J Physiol 579:571–579

    Article  Google Scholar 

  • Fetz EE, Baker MA (1973) Operantly conditioned patterns on precentral unit activity and correlated responses in adjacent cells and contralateral muscles. J Neurophysiol 36:179–204

    Google Scholar 

  • Ganguly K, Carmena JM (2009) Emergence of a stable cortical map for neuroprosthetic control. PLoS Biol 7:e1000153

    Article  Google Scholar 

  • Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–1419

    Article  Google Scholar 

  • Hochberg LR, Serruya MD, Friehs GM, et al. (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–170

    Article  Google Scholar 

  • Jackson A, Mavoori J, Fetz EE (2007) Correlations between the same motor cortex cells and arm muscles during a trained task, free behavior, and natural sleep in the macaque monkey. J Neurophysiol 97:360–374

    Article  Google Scholar 

  • Jacobsen S, Iversen E, Knutti D, et al. (1986) Design of the Utah/MIT dextrous hand. IEEE Int Conf Robot Autom 3:96–102

    Google Scholar 

  • Jarosiewicz B, Chase SM, Fraser GW, et al. (2008) Functional network reorganization during learning in a brain-computer interface paradigm. Proc Natl Acad Sci USA 105:19486–19491

    Article  Google Scholar 

  • Kilgore KL, Hoyen HA, Bryden AM, et al. (2008) An implanted upper-extremity neuroprosthesis using myoelectric control. J Hand Surg Am 33:539–550

    Article  Google Scholar 

  • Kim HK, Biggs SJ, Schloerb DW, et al. (2006) Continuous shared control for stabilizing reaching and grasping with brain-machine interfaces. IEEE Trans Biomed Eng 53:1164–1173

    Article  Google Scholar 

  • Kim S, Simeral J, Hochberg L, et al. (2008) Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia. J Neural Eng 5:455–476

    Article  Google Scholar 

  • Koterba S, Matsuoka Y (2006) Flexible, high density, artificial skin with triaxial force discernment. IEEE Int Conf Robot Autom

    Google Scholar 

  • Kuiken TA, Miller LA, Lipschutz RD, et al. (2007) Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: A case study. Lancet 369:371–380

    Article  Google Scholar 

  • Loeb GE, Brown IE, Cheng EJ (1999) A hierarchical foundation for models of sensorimotor control. Exp Brain Res 126:1–18

    Article  Google Scholar 

  • Matsuoka Y (1997) The mechanisms in a humanoid robot hand. Auton Robot 4:199–209

    Article  Google Scholar 

  • Matsuoka Y, Afshar P, Oh M (2006) On the design of robotic hands for brain-machine interface. Neurosurg Focus 20:1–9

    Article  Google Scholar 

  • Mavoori J, Jackson A, Diorio C, et al. (2005) An autonomous implantable computer for neural recording and stimulation in unrestrained primates. J Neurosci Methods 148:71–77

    Article  Google Scholar 

  • Maynard EM, Nordhausen CT, Normann RA (1997) The Utah Intracortical Electrode Array: A recording structure for potential brain-computer interfaces. Electroencephalogr Clin Neurophysiol 102:228–239

    Article  Google Scholar 

  • McConnell GC, Rees HD, Levey AI, et al. (2009) Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration. J Neural Eng 6:056003

    Article  Google Scholar 

  • Moritz CT, Perlmutter SI, Fetz EE (2008) Direct control of paralysed muscles by cortical neurons. Nature 456:639–643

    Article  Google Scholar 

  • Nicolelis MAL, Lebedev MA (2009) Principles of neural ensemble physiology underlying the operation of brain-machine interfaces. Nat Rev Neurosci 10:530–540

    Article  Google Scholar 

  • Papageorgiou DP, Shore SE, Sanford C, Bledsoe J, et al. (2006) A shuttered neural probe with on-chip flowmeters for chronic in vivo drug delivery. J Microelectromech Syst 15:1025–1033

    Article  Google Scholar 

  • Pohlmeyer EA, Oby ER, Perreault EJ, et al. (2009) Toward the restoration of hand use to a paralyzed monkey: Brain-controlled functional electrical stimulation of forearm muscles. PLoS One 4:e5924

    Article  Google Scholar 

  • Radhakrishnan SM, Baker SN, Jackson A (2008) Learning a novel myoelectric-controlled interface task. J Neurophysiol 100:2397–2408

    Article  Google Scholar 

  • Salisbury J, Craig J (1982) Articulated hands: Force control and kinematic issues. Int J Robot Res 1:4

    Article  Google Scholar 

  • Santhanam G, Ryu SI, Yu BM, et al. (2006) A high-performance brain-computer interface. Nature 442:195–198

    Article  Google Scholar 

  • Serruya MD, Hatsopoulos NG, Paninski L, et al. (2002) Brain-machine interface: Instant neural control of a movement signal. Nature 416:141–142

    Article  Google Scholar 

  • Silcox D, Rooks M, Vogel R, et al. (1993) Myoelectric prostheses. A long-term follow-up and a study of the use of alternate prostheses. J Bone Joint Surg Am 75:1781–1789

    Google Scholar 

  • Taylor DM, Helms Tillery SI, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296:1829–1832

    Google Scholar 

  • Truccolo W, Friehs GM, Donoghue JP, et al. (2008) Primary motor cortex tuning to intended movement kinematics in humans with tetraplegia. J Neurosci 28:1163–1178

    Article  Google Scholar 

  • Vande Weghe M, Rogers M, Weissert M, et al (2004) The ACT hand: Design of the skeletal structure. IEEE Int Conf Robot Autom

    Google Scholar 

  • Velliste M, Perel S, Spalding MC, et al. (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453:1098–1101

    Article  Google Scholar 

  • Vetter RJ, Williams JC, Hetke JF, et al. (2004) Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex. IEEE Trans Biomed Eng 51:896–904

    Article  Google Scholar 

  • Widge AS, Matsuoka Y, Kurnikova M (2007a) In silico insertion of poly(alkylthiophene) conductive polymers into phospholipid bilayers. Langmuir 23:10672–10681

    Article  Google Scholar 

  • Widge AS, Jeffries-El M, Cui X, et al. (2007b) Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes. Biosens Bioelectron 22:1723–1732

    Article  Google Scholar 

  • Wilkinson D, Weghe M, Matsuoka Y (2003) An extensor mechanism for an anatomical robotic hand. IEEE Int Conf Robot Autom

    Google Scholar 

  • Zanos S, Richardson AG, Shupe L, et al (2009) The Neurochip-2: A programmable, implantable system for recording neural signals and delivering contingent electrical stimuli in freely behaving monkeys. 2009 Neuroscience Meeting Planner, Program No 664.615

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alik S. Widge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Widge, A.S., Moritz, C.T., Matsuoka, Y. (2010). Direct Neural Control of Anatomically Correct Robotic Hands. In: Tan, D., Nijholt, A. (eds) Brain-Computer Interfaces. Human-Computer Interaction Series. Springer, London. https://doi.org/10.1007/978-1-84996-272-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-272-8_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-271-1

  • Online ISBN: 978-1-84996-272-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics