Skip to main content

Dynamics of Networks of Leaky-Integrate-and-Fire Neurons

  • Chapter
Book cover Network Science

Abstract

The dynamics of pulse-coupled leaky-integrate-and-fire neurons is discussed in networks with arbitrary structure and in the presence of delayed interactions. The evolution equations are formally recasted as an event-driven map in a general context where the pulses are assumed to have a finite width. The final structure of the mathematical model is simple enough to allow for an easy implementation of standard nonlinear dynamics tools. We also discuss the properties of the transient dynamics in the presence of quenched disorder (and δ-like pulses). We find that the length of the transient depends strongly on the number N of neurons. It can be as long as 106–107 inter-spike intervals for relatively small networks, but it decreases upon increasing N because of the presence of stable clustered states. Finally, we discuss the same problem in the presence of randomly fluctuating synaptic connections (annealed disorder). The stationary state turns out to be strongly affected by finite-size corrections, to the extent that the number of clusters depends on the network size even for N≈20,000.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Jahnke et al. [20, 21] showed that the same holds also in the case of heterogeneity in the single oscillator parameters and in the synaptic delays.

  2. 2.

    As we refer to δ-like pulses, it is not necessary to invoke E and Q variables.

  3. 3.

    The coefficient of variation of a stochastic variable is nothing but the normalized standard deviation.

  4. 4.

    The stability against perturbations of the cluster positions is a different story and requires a more detailed analysis.

  5. 5.

    The simulation is started from a random uniform distribution of the membrane potentials in a network of N=40,000 neurons.

  6. 6.

    Unfortunately, testing whether this phenomenon occurs for quenched disorder, too, is beyond our computational capability.

References

  1. Abbott, L.F., van Vreeswijk, C.: Asynchronous states in networks of pulse-coupled oscillators. Phys. Rev. E 48(2), 1483–1490 (1993). doi:10.1103/PhysRevE.48.1483

    Article  Google Scholar 

  2. Amit, D.: Modelling Brain Function: The World of Attractor Neural Networks. Cambridge University Press, New York (1990)

    Google Scholar 

  3. Bressloff, P.C., Coombes, S.: A dynamical theory of spike train transitions in networks of integrate-and-fire oscillators. SIAM J. Appl. Math. 60(3), 820–841 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bressloff, P.: Mean-field theory of globally coupled integrate-and-fire neural oscillators with dynamic synapses. Phys. Rev. E 60(2), 2160–2170 (1999). doi:10.1103/PhysRevE.60.2160

    Article  MathSciNet  Google Scholar 

  5. Brunel, N.: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8(3), 183–208 (2000)

    Article  MATH  Google Scholar 

  6. Brunel, N., Hakim, V.: Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput. 11(7), 1621–1671 (1999)

    Article  Google Scholar 

  7. Brunel, N., Hansel, D.: How noise affects the synchronization properties of recurrent networks of inhibitory neurons. Neural Comput. 18(5), 1066–1110 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cessac, B., Viéville, T.: On dynamics of integrate-and-fire neural networks with conductance based synapses. Front. Comput. Neurosci. 2, 2–20 (2008). doi:10.3389/neuro.10.002.2008

    Article  Google Scholar 

  9. Denker, M., Timme, M., Diesmann, M., Wolf, F., Geisel, T.: Breaking synchrony by heterogeneity in complex networks. Phys. Rev. Lett. 92(7), 074103 (2004). doi:10.1103/PhysRevLett.92.074103

    Article  Google Scholar 

  10. Destexhe, A.: Self-sustained asynchronous irregular states and Up–Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. J. Comput. Neurosci. 27(3), 493–506 (2009). doi:10.1007/s10827-009-0164-4

    Article  MathSciNet  Google Scholar 

  11. Ernst, U., Pawelzik, K., Geisel, T.: Synchronization induced by temporal delays in pulse-coupled oscillators. Phys. Rev. Lett. 74(9), 1570–1573 (1995). doi:10.1103/PhysRevLett.74.1570

    Article  Google Scholar 

  12. Ernst, U., Pawelzik, K., Geisel, T.: Delay-induced multistable synchronization of biological oscillators. Phys. Rev. E 57(2), 2150–2162 (1998). doi:10.1103/PhysRevE.57.2150

    Article  MathSciNet  Google Scholar 

  13. Fell, D.: Understanding the Control of Metabolism. Portland Press, London (1997)

    Google Scholar 

  14. Friedrich, J., Kinzel, W.: Dynamics of recurrent neural networks with delayed unreliable synapses: metastable clustering. J. Comput. Neurosci. 27(1), 65–80 (2009). doi:10.1007/s10827-008-0127-1

    Article  MathSciNet  Google Scholar 

  15. Gerstner, W., Kistler, W.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  16. Glass, L., Mackey, M.: From Clocks to Chaos: The Rhythms of Life. Princeton University Press, Princeton (1988)

    MATH  Google Scholar 

  17. Golomb, D., Hansel, D., Shraiman, B., Sompolinsky, H.: Clustering in globally coupled phase oscillators. Phys. Rev. A 45(6), 3516–3530 (1992). doi:10.1103/PhysRevA.45.3516

    Article  Google Scholar 

  18. Hale, J.: Delay Differential Equations and Dynamical Systems. Springer, New York (1991)

    Google Scholar 

  19. Hansel, D., Mato, G., Meunier, C.: Clustering and slow switching in globally coupled phase oscillators. Phys. Rev. E 48(5), 3470–3477 (1993). doi:10.1103/PhysRevE.48.3470

    Article  Google Scholar 

  20. Jahnke, S., Memmesheimer, R., Timme, M.: Stable irregular dynamics in complex neural networks. Phys. Rev. Lett. 100(4), 048102 (2008). doi:10.1103/PhysRevLett.100.048102

    Article  Google Scholar 

  21. Jahnke, S., Memmesheimer, R., Timme, M.: How chaotic is the balanced state? Front. Comput. Neurosci. (2009). doi:10.3389/neuro.10/013.2009. www.frontiersin.org/neuroscience/computationalneuroscience/paper/10.3389/neuro.10/013.2009/html/

    Google Scholar 

  22. Jin, D.: Fast convergence of spike sequences to periodic patterns in recurrent networks. Phys. Rev. Lett. 89(20), 208102 (2002). doi:10.1103/PhysRevLett.89.208102

    Article  Google Scholar 

  23. Kandel, E., Schwartz, J., Jessell, T.: Principles of Neural Science. McGraw-Hill, New York (2000)

    Google Scholar 

  24. Kinzel, W.: On the stationary state of a network of inhibitory spiking neurons. J. Comput. Neurosci. 24(1), 105–112 (2008). doi:10.1007/s10827-007-0049-3

    Article  MathSciNet  Google Scholar 

  25. Koch, C.: Biophysics of Computation. Oxford University Press, New York (1999)

    Google Scholar 

  26. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  27. Luccioli, S., Politi, A.: Paper in preparation

    Google Scholar 

  28. Mauroy, A., Sepulchre, R.: Clustering behaviors in networks of integrate-and-fire oscillators. Chaos 18, 037122 (2008). doi:10.1063/1.2967806

    Article  MathSciNet  Google Scholar 

  29. Mazor, O., Laurent, G.: Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48(4), 661–673 (2005). doi:10.1016/j.neuron.2005.09.032

    Article  Google Scholar 

  30. Mirollo, R., Strogatz, S.: Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50(6), 1645–1662 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mohanty, P., Politi, A.: A new approach to partial synchronization in globally coupled rotators. J. Phys. A, Math. Gen. 39(26), L415–L421 (2006). http://stacks.iop.org/0305-4470/39/i=26/a=L01

    Article  MathSciNet  MATH  Google Scholar 

  32. Nichols, S., Wiesenfeld, K.: Ubiquitous neutral stability of splay-phase states. Phys. Rev. A 45(12), 8430–8435 (1992). doi:10.1103/PhysRevA.45.8430

    Article  Google Scholar 

  33. Olmi, S., Livi, R., Politi, A., Torcini, A.: Collective oscillations in disordered neural networks. Phys. Rev. E 81(4), 046119 (2010). doi:10.1103/PhysRevE.81.046119

    Article  Google Scholar 

  34. Politi, A., Torcini, A.: Stable chaos. In: Nonlinear Dynamics and Chaos: Advances and Perspectives, Understanding Complex Systems. Springer, Heidelberg (2010)

    Google Scholar 

  35. Rieke, F., Warland, D., de Ruyter van Steveninck, R., Bialek, W.: Spikes: Exploring the Neural Code. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  36. Sheperd, G. (ed.): The Synaptic Organization of the Brain. Oxford University Press, New York (2004)

    Google Scholar 

  37. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  Google Scholar 

  38. Strogatz, S., Mirollo, R.: Splay states in globally coupled Josephson arrays: Analytical prediction of Floquet multipliers. Phys. Rev. E 47(1), 220–227 (1993). doi:10.1103/PhysRevE.47.220

    Article  Google Scholar 

  39. Timme, M., Wolf, F., Geisel, T.: Coexistence of regular and irregular dynamics in complex networks of pulse-coupled oscillators. Phys. Rev. Lett. 89(25), 258701 (2002). doi:10.1103/PhysRevLett.89.258701

    Article  Google Scholar 

  40. Tuckwell, H.: Introduction to Theoretical Neurobiology. Cambridge University Press, New York (1988)

    Book  Google Scholar 

  41. van Vreeswijk, C.: Partial synchronization in populations of pulse-coupled oscillators. Phys. Rev. E 54(5), 5522–5537 (1996). doi:10.1103/PhysRevE.54.5522

    Article  Google Scholar 

  42. van Vreeswijk, C., Sompolinsky, H.: Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274(5293), 1724–1726 (1996)

    Article  Google Scholar 

  43. van Vreeswijk, C., Sompolinsky, H.: Chaotic balanced state in a model of cortical circuits. Neural Comput. 10(6), 1321–1371 (1998)

    Article  Google Scholar 

  44. Zillmer, R., Brunel, N., Hansel, D.: Very long transients, irregular firing, and chaotic dynamics in networks of randomly connected inhibitory integrate-and-fire neurons. Phys. Rev. E 79(3), 031909 (2009). doi:10.1103/PhysRevE.79.031909

    Article  MathSciNet  Google Scholar 

  45. Zillmer, R., Livi, R., Politi, A., Torcini, A.: Desynchronization in diluted neural networks. Phys. Rev. E 74(3), 036203 (2006). doi:10.1103/PhysRevE.74.036203

    Article  MathSciNet  Google Scholar 

  46. Zillmer, R., Livi, R., Politi, A., Torcini, A.: Stability of the splay state in pulse-coupled networks. Phys. Rev. E 76(4), 046102 (2007). doi:10.1103/PhysRevE.76.046102

    Article  Google Scholar 

  47. Zumdieck, A., Timme, M., Geisel, T., Wolf, F.: Long chaotic transients in complex networks. Phys. Rev. Lett. 93(24), 244103 (2004). doi:10.1103/PhysRevLett.93.244103

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank A. Torcini for enlightening discussions. This work has been partly carried out with the support of the EU project NEST-PATH-043309 and of the Italian project “Struttura e dinamica di reti complesse” N. 3001 within the CNR programme “Ricerca spontanea a tema libero”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Politi .

Editor information

Editors and Affiliations

Appendix: Rescaling the Equations of Motion

Appendix: Rescaling the Equations of Motion

Models of LIF neurons are often introduced by referring to different normalizations. In order to facilitate the comparison of the results obtained by different groups, in the following we illustrate the rescaling needed to express the equations in the adimensional setting adopted in (11.1).

11.1.1 A.1 Setup A

Zillmer et al. [44] analyze a network of N LIF neurons by referring to the equations

$$\beta\dot{V}_{i}=I_{\mathrm{ext}}-V_{i}+\beta\frac{J}{K}\sum_{l=1}^{N}\mu_{i,l}\sum_{m}F\bigl(t-t_{l}^{(m)}-D\bigr),\quad i=1,\dots,N$$
(11.26)

(some variable names have been changed to avoid the confusion arising from the overlap between symbols which denote different quantities), where K is the number of incoming links to each neuron (f=K/N is the dilution of the network); β is the membrane time constant of the neuron; I ext is an external current and D is the synaptic delay. Moreover, the model definition includes the reset potential V r and the firing threshold V t . The parameter J with J<0 (resp., J>0) for inhibitory (resp., excitatory) coupling represents the coupling strength, while the topology of the network is defined by the connectivity matrix μ i,l . The distribution P(μ) is chosen to be dichotomic, i.e. P(μ)=(1−f)δ(μ)+f δ(μ−1), which implies that the average is 〈μ〉=f, while the variance is σ 2(μ)=f(1−f). Finally, the function F(t) (that becomes a Dirac’s δ-function in the case of zero-width pulses) describes the shape of the single pulse, while \(t_{l}^{(m)}\) represents the mth firing time of the lth neuron.

The above equations transform into (11.1), once the following changes of variables are introduced,

  • tt/β,

  • Dτ=D/β,

  • Vv=(VV r )/(V t V r ),

  • I exta=(I extV r )/(V t V r ),

  • Jg=J/(V t V r ),

  • μ i,j S i,j =μ i,j /〈μ〉=μ i,j /f,

where the new distribution P(S) of connections strengths writes \(P(S)= (1-\nobreak f)\delta(S)+f\delta(S-1/f)\), so that its average is equal to one as required, while the variance is σ 2(S)=(1−f)/f. The parameter values corresponding to this setup are summarized in Table 11.1.

11.1.2 A.2 Setup B

In Jahnke et al. [20, 21] the model is defined as

$$\dot{V}_{i}=I_{\mathrm{ext}}-\gamma V_{i}+\sum_{j=1}^{N}\epsilon_{i,j}\sum_{m}F\bigl(t-t_{j}^{(m)}-D\bigr),\quad i=1,\dots,N,$$
(11.27)

where V r =0, V t =1 and \(\sum_{j=1}^{N}\epsilon_{i,j}=J_{T}\). The coupling strengths ε i,j are randomly chosen according to the distribution

$$P(\epsilon)=(1-f)\delta(\epsilon)+\frac{f^3N}{2J_T}H(\epsilon)H\biggl(\frac{2J_T}{Nf^2}-\epsilon\biggr)$$
(11.28)

where H(x) is the Heaviside step function.

By performing the transformations,

  • tt γ,

  • Dτ=D γ,

  • I exta=I ext/γ,

  • J T g=J T ,

  • ε i,j S i,j =ε i,j /〈ε〉=ε i,j Nf/J T ,

the model (11.27) can be rewritten in the form (11.1). The probability of connections strengths becomes

$$P(S)=(1-f)\delta(S)+\frac{f^2}{2}H(S)H(2/f-S)$$

so that 〈S〉=1, and σ 2(S)=4/(3f)−1. The parameter values corresponding to this setup are summarized in Table 11.1.

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Politi, A., Luccioli, S. (2010). Dynamics of Networks of Leaky-Integrate-and-Fire Neurons. In: Estrada, E., Fox, M., Higham, D., Oppo, GL. (eds) Network Science. Springer, London. https://doi.org/10.1007/978-1-84996-396-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-396-1_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-395-4

  • Online ISBN: 978-1-84996-396-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics