Skip to main content

Revealing Structure of Complex Biological Systems Using Bayesian Networks

  • Chapter
Network Science

Abstract

Bayesian networks represent statistical dependencies among variables; they are able to model multiple types of relationships, including stochastic, non-linear, and arbitrary combinatoric. Such flexibility has made them excellent models for reverse-engineering structure of complex networks. This chapter reviews the use of Bayesian networks for probing structure of biological systems. We begin with an introduction to Bayesian networks, addressing especially issues of their interpretation as relates to understanding system structure. We then cover how Bayesian network structures are learned from data, considering a popular scoring metric, the BDe, in detail. We finish by reviewing the uses of Bayesian networks in biological systems to date and the concurrent advances in Bayesian network methodology tailored for use in biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is worth noting that the addition of tired has formed a v-structure [60] that has no other equivalence class representation; this thus uniquely orients all links in the BN, enabling causal interpretation.

  2. 2.

    Note that with basic DBNs, which include self-links from a variable in one time to itself in the next, the only link reversals would be those to variables in tt without influence from different variables in t: the convergence of self-links and links from other variables creates a combinatoric v-structure (as in Fig. 9.3(c)).

References

  1. Auliac, C., Frouin, V., Gidrol, X., d’Alché Buc, F.: Evolutionary approaches for the reverse-engineering of gene regulatory networks: a study on a biologically realistic dataset. BMC Bioinform. 9, 91 (2008)

    Article  Google Scholar 

  2. Bach, F., Jordan, M.: Learning graphical models with Mercer kernels. In: Advances in Neural Information Processing Systems 15, pp. 1033–1040. MIT Press, Cambridge (2003)

    Google Scholar 

  3. Bandettini, P.: What’s new in neuroimaging methods? Ann. N.Y. Acad. Sci. 1156, 260–293 (2009)

    Article  Google Scholar 

  4. Bernard, A., Hartemink, A.: Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data. In: Pacific Symposium of Biocomputing 10, pp. 459–470. World Scientific, Singapore (2005)

    Chapter  Google Scholar 

  5. Bøttcher, S., Dethlefsen, C.: DEAL: A package for learning Bayesian networks. J. Stat. Softw. 8, 1–40 (2003)

    Google Scholar 

  6. Buntine, W.: Theory refinement on Bayesian networks. In: Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence, pp. 52–60. Morgan Kaufmann, San Mateo (1991)

    Google Scholar 

  7. Burge, J., Lane, T., Link, H., Qiu, S., Clark, V.: Discrete dynamic Bayesian network analysis of fMRI data. Hum. Brain Mapp. 30, 122–137 (2009)

    Article  Google Scholar 

  8. Chavan, S.S., Bauer, M.A., Scutari, M, Nagarajan, R.: NATbox: a network analysis toolbox in R. BMC Bioinform. 10, Suppl 11:S14 (2009)

    Google Scholar 

  9. Chen, X., Blanchette, M.: Prediction of tissue-specific cis-regulatory modules using Bayesian networks and regression trees. BMC Bioinform. 8, Suppl 10:S2 (2007)

    Google Scholar 

  10. Chen, X., Chen, M., Ning, K.: BNArray: an R package for constructing gene regulatory networks from microarray data by using Bayesian network. Bioinformatics 22, 2952–2954 (2006)

    Article  Google Scholar 

  11. Cheng, J., Bell, D., Liu, W.: Learning belief networks from data: an information theory based approach. In: Proceedings of the 6th International Conference on Information and Knowledge Management, pp. 325–331. ACM Press, New York (1997)

    Google Scholar 

  12. Chickering, D.: Learning Bayesian networks is NP-complete. In: Fisher, D., Lenz, H.J. (eds.) Learning from Data: Artificial Intelligence and Statistics V. Lecture Notes in Statistics, vol. 112, pp. 121–130. Springer, Berlin (1996)

    Chapter  Google Scholar 

  13. Cooper, G., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9, 309–347 (1992)

    MATH  Google Scholar 

  14. Cooper, G., Yoo, C.: Causal discovery from a mixture of experimental and observational data. In: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, pp. 116–125. Morgan Kaufmann, San Mateo (1999)

    Google Scholar 

  15. Cowell, R.: Conditions under which conditional independence and scoring methods lead to identical selection of Bayesian network models. In: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, pp. 91–97. Morgan Kaufmann, San Mateo (2001)

    Google Scholar 

  16. Davis, A., Jenkinson, L., Lawton, J., Shorrocks, B., Wood, S.: Making mistakes when predicting shifts in species range in response to global warming. Nature 391, 783–786 (1998)

    Article  Google Scholar 

  17. Djebbari, A., Quackenbush, J.: Seeded Bayesian networks: constructing genetic networks from microarray data. BMC Syst. Biol. 2, 57 (2008)

    Article  Google Scholar 

  18. Dojer, N., Gambin, A., Mizera, A., Wilczyński, B., Tiuryn, J.: Applying dynamic Bayesian networks to perturbed gene expression data. BMC Bioinform. 7, 249 (2006)

    Article  Google Scholar 

  19. Echtermeyer, C., Smulders, T., Smith, V.: Causal pattern recovery from neural spike train data using the Snap Shot Score. J. Comput. Neurosci. 29, 231–252 (2010). doi:10.1007/s10827-009-0174-2

    Article  MathSciNet  Google Scholar 

  20. Eldawlatly, S., Zhou, Y., Jin, R., Oweiss, K.: Reconstructing functional neuronal circuits using dynamic Bayesian networks. In: Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5531–5534 (2008)

    Google Scholar 

  21. Eldawlatly, S., Zhou, Y., Jin, R., Oweiss, K.: Inferring functional cortical networks from spike train ensembles using dynamic Bayesian networks. In: Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3489–3492 (2009)

    Google Scholar 

  22. Eldawlatly, S., Zhou, Y., Jin, R., Oweiss, K.: On the use of dynamic Bayesian networks in reconstructing functional neuronal networks from spike train ensembles. Neural Comput. 22, 158–189 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Friedman, N.: Learning belief networks in the presence of missing values and hidden variables. In: Proceedings of the 14th International Conference on Machine Learning, pp. 125–133. Morgan Kaufmann, San Mateo (1997)

    Google Scholar 

  24. Friedman, N.: Inferring cellular networks using probabilistic graphical models. Science 303, 799–805 (2004)

    Article  Google Scholar 

  25. Friedman, N., Koller, D.: Being Bayesian about network structure. Mach. Learn. 50, 95–125 (2003)

    Article  MATH  Google Scholar 

  26. Friedman, N., Murphy, K., Russell, S.: Learning the structure of dynamic probabilistic networks. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pp. 139–147. Morgan Kaufmann, San Mateo (1998)

    Google Scholar 

  27. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. J. Comput. Biol. 7, 601–620 (2000)

    Article  Google Scholar 

  28. Fusco, G.: Looking for sustainable urban mobility through Bayesian networks. Sci. Reg./Ital. J. Reg. Sci. 3, 87–106 (2003)

    Google Scholar 

  29. Grewe, B., Helmchen, F.: Optical probing of neuronal ensemble activity. Curr. Opin. Neurobiol. 19, 520–529 (2009)

    Article  Google Scholar 

  30. Guha, U., Chaerkady, R., Marimuthu, A., Patterson, A., Kashyap, M., Harsha, H., Sato, M., Bader, J., Lash, A., Minna, J., Pandey, A., Varmus, H.: Comparisons of tyrosine phosphorylated proteins in cells expressing lung cancer-specific alleles of EGFR and KRAS. Proc. Natl. Acad. Sci. USA 105, 14112–14117 (2008)

    Article  Google Scholar 

  31. Hansen, A., Ott, S., Koentges, G.: Increasing feasibility of optimal gene network estimation. Genome Inform. 15, 141–150 (2004)

    Google Scholar 

  32. Hartemink, A.: Banjo: Bayesian Network Inference with Java Objects (2005). http://www.cs.duke.edu/~amink/software/banjo

  33. Hartemink, A., Gifford, D., Jaakkola, T., Young, R.: Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. In: Pacific Symposium of Biocomputing, vol. 6, pp. 422–433. World Scientific, Singapore (2001)

    Google Scholar 

  34. Hartemink, A., Gifford, D., Jaakkola, T., Young, R.: Combining location and expression data for principled discovery of genetic regulatory network models. In: Pacific Symposium on Biocomputing, vol. 7, pp. 437–449. World Scientific, Singapore (2002)

    Google Scholar 

  35. Heckerman, D.: A tutorial on learning with Bayesian networks. Technical Report MSR-TR-95–06, Microsoft Research (1995)

    Google Scholar 

  36. Husmeier, D.: Inferring dynamic Bayesian networks with MCMC (2003). http://www.bioss.ac.uk/~dirk/software/DBmcmc

  37. Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19, 2271–2282 (2003)

    Article  Google Scholar 

  38. Imoto, S., Goto, T., Miyano, S.: Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. In: Pacific Symposium on Biocomputing, vol. 7, pp. 175–186. World Scientific, Singapore (2002)

    Google Scholar 

  39. Imoto, S., Kim, S., Goto, T., Miyano, S., Aburatani, S., Tashiro, K., Kuhara, S.: Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network. J. Bioinform. Comput. Biol. 1, 231–252 (2003)

    Article  Google Scholar 

  40. Imoto, S., Higuchi, T., Goto, T., Tashiro, K., Kuhara, S., Miyano, S.: Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks. J. Bioinform. Comput. Biol. 2, 77–98 (2004)

    Article  Google Scholar 

  41. Imoto, S., Tamada, Y., Araki, H., Yasuda, K., Print, C., Charnock-Jones, S., Sanders, D., Savoie, C., Tashiro, K., Kuhara, S., Miyano, S.: Computational strategy for discovering druggable gene networks from genome-wide RNA expression profiles. In: Pacific Symposium on Biocomputing, vol. 11, pp. 559–571. World Scientific, Singapore (2006)

    Chapter  Google Scholar 

  42. Jung, S., Nam, Y., Lee, D.: Inference of combinatorial neuronal synchrony with Bayesian networks. J. Neurosci. Methods 186, 130–139 (2010)

    Article  Google Scholar 

  43. Kiiveri, H., Speed, T., Carlin, J.: Recursive causal models. J. Aust. Math. Soc. A 36, 30–52 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  44. Knight, C., Beale, C.: Pale Rock Sparrow Carpospiza brachydactyla in the Mount Lebanon range: modelling breeding habitat. Ibis 147, 324–333 (2005)

    Article  Google Scholar 

  45. Kotz, S., Balakrishnan, N., Johnson, N.: Continuous Multivariate Distributions, vol. 1. Wiley-Interscience, New York (2000)

    Book  MATH  Google Scholar 

  46. Lam, W., Bacchus, F.: Learning Bayesian belief networks: an approach based on the MDL principle. Comput. Intell. 10, 269–293 (1994)

    Article  Google Scholar 

  47. Lee, P., Lee, D.: Modularized learning of genetic interaction networks from biological annotations and mRNA expression data. Bioinformatics 21, 2739–2747 (2005)

    Article  Google Scholar 

  48. Li, J., Wang, Z., Eng, J., McKeown, M.: Bayesian network modeling for discovering “dependent synergies” among muscles in reaching movements. IEEE Trans. Biomed. Eng. 55, 298–310 (2008)

    Article  Google Scholar 

  49. Li, Z., Chan, C.: Inferring pathways and networks with a Bayesian framework. FASEB J. 18, 746–748 (2004)

    Article  Google Scholar 

  50. Liu, B., Jiang, T., Ma, S., Zhao, H., Li, J., Jiang, X., Zhang, J.: Exploring candidate genes for human brain diseases from a brain-specific gene network. Biochem. Biophys. Res. Commun. 349, 1308–1314 (2006)

    Article  Google Scholar 

  51. Luna, I., Huang, Y., Yin, Y., Padillo, D., Perez, M.: Uncovering gene regulatory networks from time-series microarray data with variational Bayesian structural expectation maximization. EURASIP J. Bioinform. Syst. Biol. 2007, 71312 (2007)

    Article  Google Scholar 

  52. Margaritis, D.: Distribution-free learning of Bayesian network structure in continuous domains. In: Proceedings of the 20th National Conference on Artificial Intelligence, pp. 825–830. AAAI, Washington (2005)

    Google Scholar 

  53. Markowetz, F., Spang, R.: Inferring cellular networks—a review. BMC Bioinform. 8, Suppl 6:S5 (2007)

    Article  Google Scholar 

  54. Matthäus, F., Smith, V.A., Fogtman, A., Sommer, W.H., Leonardi-Essmann, F., Lourdusamy, A., Reimers, M., Spanagel, R., Gebicke-Haerter, P.: Interactive molecular networks obtained by computer-aided conversion of microarray data from brains of alcohol-drinking rats. Pharmacopsychiatry 42, 118–128 (2009)

    Article  Google Scholar 

  55. McAdams, H., Arkin, A.: Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA 94, 814–819 (1997)

    Article  Google Scholar 

  56. Memmott, J., Fowler, S., Paynter, Q., Sheppard, A., Syrett, P.: The invertebrate fauna on broom, Cytisus scoparius, in two native and two exotic habitats. Acta Oecol. 21, 213–222 (2000)

    Article  Google Scholar 

  57. Milns, I., Beale, C., Smith, V.: Revealing ecological networks using Bayesian network inference algorithms. Ecology 91, 1892–1899 (2010). doi:10.1890/09-0731

    Article  Google Scholar 

  58. Murphy, K.: The Bayes Net Toolbox for Matlab. Comput. Sci. Stat. 33, 1024–1034 (2001)

    Google Scholar 

  59. Murphy, K., Mian, S.: Modelling gene expression data using dynamic Bayesian networks. Technical report, University of California, Berkeley (1999)

    Google Scholar 

  60. Muruzabal, J., Cotta, C.: A primer on the evolution of equivalence classes of Bayesian-network structures. In: Parallel Problem Solving from Nature VIII. Lecture Notes in Computer Science, vol. 3242, pp. 612–621. Springer, Berlin (2004)

    Chapter  Google Scholar 

  61. Myllymaki, P., Silander, T., Tirri, H., Uronen, P.: B-Course: a web-based tool for Bayesian and causal data analysis. Int. J. Artif. Intell. Tools 11, 369–388 (2002)

    Article  Google Scholar 

  62. Nariai, N., Kim, S., Imoto, S., Miyano, S.: Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks. In: Pacific Symposium on Biocomputing, vol. 9, pp. 336–347. World Scientific, Singapore (2004)

    Google Scholar 

  63. Ong, I., Glasner, J., Page, D.: Modelling regulatory pathways in E. coli from time series expression profiles. Bioinformatics 18, 241–248 (2002)

    Article  Google Scholar 

  64. Pearl, J.: Bayesian networks: a model of self-activated memory for evidential reasoning. In: Proceedings of the 7th Conference of the Cognitive Science Society, pp. 329–334 (1985)

    Google Scholar 

  65. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, Cambridge (1988). 552 pp.

    Google Scholar 

  66. Pearl, J.: Causality. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  67. Pearson, R., Dawson, T.: Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371 (2003)

    Article  Google Scholar 

  68. Pe’er, D., Regev, A., Tanay, A.: Minreg: inferring an active regulator set. Bioinformatics 18, 258–267 (2002)

    Article  Google Scholar 

  69. Pe’er, D., Regev, A., Elidan, G., Friedman, N.: Inferring subnetworks from perturbed expression profiles. Bioinformatics 17, 215–224 (2001)

    Article  Google Scholar 

  70. Perrin, B.E., Ralaivola, L., Mazurie, A., Bottani, S., Mallet, J., d’Alché Buc, F.: Gene networks inference using dynamic Bayesian networks. Bioinformatics 19, 138–148 (2003)

    Article  Google Scholar 

  71. Proulx, S., Promislow, D., Phillips, P.: Network thinking in ecology and evolution. Trends Ecol. Evol. 20, 345–353 (2005)

    Article  Google Scholar 

  72. Rajapakse, J., Zhou, J.: Learning effective brain connectivity with dynamic Bayesian networks. NeuroImage 37, 749–760 (2007)

    Article  Google Scholar 

  73. Rao, R.: Bayesian computation in recurrent neural circuits. Neural Comput. 16, 1–38 (2004)

    Article  MATH  Google Scholar 

  74. Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D., Nolan, G.: Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523–529 (2005)

    Article  Google Scholar 

  75. Sameshima, K., Baccalá, L.: Using partial directed coherence to describe neuronal ensemble interactions. J. Neurosci. Methods 94, 93–103 (1999)

    Article  Google Scholar 

  76. Smith, V., Jarvis, E., Hartemink, A.: Influence of network topology and data collection on functional network influence. In: Pacific Symposium on Biocomputing, vol. 8, pp. 164–175. World Scientific, Singapore (2003)

    Google Scholar 

  77. Smith, V., Yu, J., Smulders, T., Hartemink, A., Jarvis, E.: Computational inference of neural information flow networks. PLoS Comput. Biol. 2, 161 (2006)

    Article  Google Scholar 

  78. Spiegelhalter, D., Dawid, A., Lauritzen, S., Cowell, R.: Bayesian analysis in expert systems. Stat. Sci. 8, 219–247 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  79. Spirtes, P., Glymour, C.: An algorithm for fast recovery of sparse causal graphs. Soc. Sci. Comput. Rev. 9, 62–72 (1991)

    Article  Google Scholar 

  80. Steck, H., Jaakkola, T.: On the Dirichlet prior and Bayesian regularization. In: Advances in Neural Information Processing Systems, vol. 15, pp. 713–720. MIT Press, Cambridge (2003)

    Google Scholar 

  81. Suzuki, J.: A construction of Bayesian networks from databases on an MDL principle. In: Proceedings of the 9th Conference on Uncertainty in Artificial Intelligence, pp. 266–273. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  82. Tamada, Y., Kim, S., Bannai, H., Imoto, S., Tashiro, K., Kuhara, S., Miyano, S.: Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection. Bioinformatics 19, 227–236 (2003)

    Article  Google Scholar 

  83. Tamada, Y., Imoto, S., Tashiro, K., Kuhara, S., Miyano, S.: Identifying drug active pathways from gene networks estimated by gene expression data. Genome Inform. 16, 182–191 (2005)

    Google Scholar 

  84. Tamada, Y., Bannai, H., Imoto, S., Katayama, T., Kanehisa, M., Miyano, S.: Utilizing evolutionary information and gene expression data for estimating gene networks with Bayesian network models. J. Bioinform. Comput. Biol. 3, 1295–1313 (2005)

    Article  Google Scholar 

  85. Truccolo, W., Eden, U., Fellows, M., Donoghue, J., Brown, E.: A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. J. Neurophysiol. 93, 1074–1089 (2005)

    Article  Google Scholar 

  86. Twardy, C., Koester, R., Gatt, R.: Missing person behaviour: an Australian study. Final Report to the Australian National SAR Council (2006)

    Google Scholar 

  87. Wallace, C., Korb, K., Dai, H.: Causal discovery via MML. In: Proceedings of the 13th International Conference on Machine Learning, pp. 516–524. Morgan Kaufmann, San Mateo (1996)

    Google Scholar 

  88. Wang, M., Chen, Z., Cloutier, S.: A hybrid Bayesian network learning method for constructing gene networks. Comput. Biol. Chem. 31, 361–372 (2007)

    Article  MATH  Google Scholar 

  89. Wang, T., Touchman, J., Xue, G.: Applying two-level simulated annealing on Bayesian structure learning to infer genetic networks. In: Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference, pp. 647–648 (2004)

    Google Scholar 

  90. Werhli, A., Husmeier, D.: Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Stat. Appl. Genet. Mol. Biol. 6, 15 (2007)

    MathSciNet  Google Scholar 

  91. Wermuth, N., Lauritzen, S.: Graphical and recursive models for contingency tables. Biometrika 70, 537–552 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  92. Wilczynski, B., Dojer, N.: BNFinder: exact and efficient method for learning Bayesian networks. Bioinformatics 25, 286–287 (2009)

    Article  Google Scholar 

  93. Wright, S.: Correlation and causation. J. Agric. Res. 20, 557–585 (1921)

    Google Scholar 

  94. Yoo, C., Thorsson, V., Cooper, G.: Discovery of causal relationships in a gene-regulation pathway from a mixture of experimental and observational DNA microarray data. In: Pacific Symposium of Biocomputing, vol. 10, pp. 498–509. World Scientific, Singapore (2002)

    Google Scholar 

  95. Yu, J.: Developing Bayesian network inference algorithms to predict causal functional pathways in biological systems. PhD thesis, Duke University (2005)

    Google Scholar 

  96. Yu, J., Smith, V., Wang, P., Hartemink, A., Jarvis, E.: Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20, 3594–3603 (2004)

    Article  Google Scholar 

  97. Zhang, L., Samaras, D., Alia-Klein, N., Volkow, N.: Modeling neuronal interactivity using dynamic Bayesian networks. In: Advances in Neural Information Processing Systems, vol. 18. MIT Press, Cambridge (2006)

    Google Scholar 

  98. Zheng, X., Rajapakse, J.: Learning functional structure from fMR images. NeuroImage 31, 1601–1613 (2006)

    Article  Google Scholar 

  99. Zhu, J., Jambhekar, A., Sarver, A., DeRisi, J.: A Bayesian network driven approach to model the transcriptional response to nitric oxide in Saccharomyces cerevisiae. PLoS ONE 1, 94 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to Dr. Charles Twardy for a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Anne Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Smith, V.A. (2010). Revealing Structure of Complex Biological Systems Using Bayesian Networks. In: Estrada, E., Fox, M., Higham, D., Oppo, GL. (eds) Network Science. Springer, London. https://doi.org/10.1007/978-1-84996-396-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-396-1_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-395-4

  • Online ISBN: 978-1-84996-396-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics