Skip to main content

Introduction

  • Chapter

Part of the book series: Computational Biology ((COBO,volume 16))

Abstract

This chapter gives a general introduction into the field of systems biology and the motivation for using Petri nets in this field. We consider modeling processes in the context of biological modeling approaches providing different examples. Starting from a general description of the purpose of a model and the modeling process, we cover the range from qualitative to quantitative modeling. We compile different modeling techniques at different abstraction levels, for example, at discrete, stochastic, and continuous levels. In this context, we introduce Petri nets and give the motivation for using Petri nets in particular for modeling biochemical systems. We describe the first applications of Petri nets in biology and give a brief overview of the progress made so far. Furthermore, we discuss the main public data resources for systems biology, giving an overview of microarray data repositories, protein–protein interaction databases, and pathway databases. Finally, we describe methods and tools for the visualization of biochemical systems and Petri net models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alfarano, C., Andrade, C.E., Anthony, K., et al.: The Biomolecular Interaction Network Database and related tools 2005 update. Nucleic Acids Res. 33, D418–D424 (2005)

    Article  Google Scholar 

  2. Alon, U.: An Introduction to Systems Biology. CRC Press, Boca Raton (2006)

    MATH  Google Scholar 

  3. Ashburner, M., Ball, C.A., Blake, J.A., et al.: Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000)

    Article  Google Scholar 

  4. Ashyraliyev, M., Fomekong-Nanfack, Y., Kaandorp, J.A., Blom, J.G.: Systems biology: parameter estimation for biochemical models. FEBS J. 276, 886–902 (2009)

    Article  Google Scholar 

  5. Bard, J., Rhee, S.Y., Ashburner, M.: An ontology for cell types. Genome Biol. 6, R21 (2005)

    Article  Google Scholar 

  6. Bassett, D.E.Jr., Eisen, M.B., Boguski, M.S.: Gene expression informatic—it’s all in your mine. Nat. Genet. 21, 51–55 (1999)

    Article  Google Scholar 

  7. Biedl, T.C., Madden, B., Tollis, I.G.: The three-phase method: a unified approach to orthogonal graph drawing. In: Proceedings international symposium on graph drawing. Lecture Notes in Computer Science, vol. 1353, pp. 391–402. Springer, Berlin (1997)

    Chapter  Google Scholar 

  8. Bortfeldt, R., Schuster, S., Koch, I.: Exhaustive analysis of the modular structure of the spliceosomal assembly network—a Petri net approach. In Silico Biol. 10, 0007 (2010)

    Google Scholar 

  9. Bowtell, D.D.: Options available—from start to finish—for obtaining expression data by microarray. Nat. Genet. 21, 25–32 (1999)

    Article  Google Scholar 

  10. Box, G.E.P., Draper, N.R.: Empirical Model-Building and Response Surfaces. Wiley Series in Probability and Statistics, p. 424. Wiley, New York (1987)

    Google Scholar 

  11. Boyle, J.: Gene-Expression Omnibus integration and clustering tools in SeqExpress. Bioinformatics 21, 2550–1551 (2005)

    Article  Google Scholar 

  12. Brazma, A., Hingamp, P., Quackenbush, J., et al.: Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29, 365–371 (2001)

    Article  Google Scholar 

  13. Caspi, R., Foerster, H., Fulcher, C.A., Kaipa, P., Krummenacker, M., Latendresse, M., Paley, S., Rhee, S.Y., Shearer, A.G., Tissier, C., Walk, T.C., Zhang, P., Karp, P.D.: The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 36, D623–D631 (2008)

    Article  Google Scholar 

  14. Chiola, G., Franceschinis, G., Gaeta, R., Ribaudo, M.: GreatSPN 1.7: graphical editor and analyzer for timed and stochastic Petri nets. Perform. Eval. 24, 47–68 (1995)

    Article  MATH  Google Scholar 

  15. Dahlquist, K.D., Salomonis, N., Vranizan, K., et al.: GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat. Genet. 31, 19–22 (2002)

    Article  Google Scholar 

  16. Doi, A., Nagasaki, M., Matsuno, H., Miyano, S.: Simulation based validation of the p53 transcriptional activity with hybrid functional Petri net. In Silico Biol. 6(1–2), 1–13 (2006)

    Google Scholar 

  17. Dwyer, T., Marriott, K., Schreiber, F., et al.: Exploration of networks using overview+detail with constraint-based cooperative layout. IEEE Trans. Vis. Comput. Graph. 14(6), 1293–1300 (2008)

    Article  Google Scholar 

  18. International Union of Biochemistry and Moleculare Biology, Nomenclature Committee: Enzyme Nomenclature. Academic Press, San Diego (1992)

    Google Scholar 

  19. Enright, A.J., Ouzounis, C.A.: BioLayout-an automatic graph layout algorithm for similarity visualization. Bioinformatics 17(9), 853–854 (2001)

    Article  Google Scholar 

  20. Fall, C., Marland, E., Wagner, J., Tyson, J.: Computational Cell Biology. Springer, Berlin (2002)

    MATH  Google Scholar 

  21. Fruchterman, T., Reingold, E.: Graph Drawing by Force-directed Placement. Software—Practice and Experience 21(11), 1129–1164 (1991)

    Article  Google Scholar 

  22. Funahashi, A., Tanimura, N., Morohashi, M., Kitano, H.: CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1, 159–162 (2003)

    Article  Google Scholar 

  23. Functional genomics: Lipidomics In: The Scientific Athlete (2009). http://technorganiac.wordpress.com/category/definitions/

  24. Genrich, H.J., Küffner, R., Voss, K.: Executable Petri net models for the analysis of metabolic pathways. Int. J. STTT 3, 394–404 (2001)

    MATH  Google Scholar 

  25. Glossary In: Biotechnology Industry Organization (2009), http://www.bio.org/speeches/pubs/er/glossary_s.asp

  26. Glossary In: The New Genetics. National Institute of General Medical Sciences (2006). Publication No. 07-662. http://publications.nigms.nih.gov/thenewgenetics/glossary.html. Cited 20 March 2010

  27. Goss, P.J.E., Peccoud, J.: Analysis of the stabilizing effect of Rom on the genetic network controlling ColE1 plasmid replication. Proc. Pac. Symp. Biocomput. 4, 65–76 (1999)

    Google Scholar 

  28. Grunwald, S., Speer, A., Ackermann, J., Koch, I.: Petri net modelling of gene regulation of the Duchenne muscular dystrophy. Biosystems 92(2), 189–205 (2008)

    Article  Google Scholar 

  29. Heiner, M., Koch, I., Will, J.: Model validation of biological pathways using Petri nets—demonstrated for apoptosis. Biosystems 75(1), 15–28 (2004)

    Article  Google Scholar 

  30. Hofestädt, R.: A petri net application to model metabolic processes. Syst. Anal. Mod. Simul. 16(2), 113–122 (1994)

    MATH  Google Scholar 

  31. Hofestädt, R., Thelen, S.: Quantitative modeling of biochemical networks. In Silico Biol. 1, 39–53 (1998)

    Google Scholar 

  32. Ikeo, K., Ishi-i, J., Tamura, T., et al.: CIBEX: center for information biology gene expression database. C. R. Biol. 326, 1079–1082 (2003)

    Article  Google Scholar 

  33. Joshi-Tope, G., Gillespie, M., Vastrik, I., et al.: Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 33, D428–D432 (2005)

    Article  Google Scholar 

  34. Junker, B.H., Klukas, C., Schreiber, F.: VANTED: A system for advanced data analysis and visualization in the context of biological networks. BMC Bioinform. 7, 109 (2006)

    Article  Google Scholar 

  35. Kanehisa, M., Goto, S., Kawashima, S., et al.: The KEGG resource for deciphering the genome. Nucleic Acids Res. 32, D277–D280 (2004)

    Article  Google Scholar 

  36. Karp, P.D., Riley, M., Paley, S.M., Pellegrini-Toole, A., Krummenacker, M.: EcoCyc: Encyclopedia of Escherichia coli genes and metabolism. Nucleic Acids Res. 26, 50–53 (1998)

    Article  Google Scholar 

  37. Karp, P.D., Riley, M., Saier, M., Paulsen, I.T., Paley, S.M., Pellegrini-Toole, A.: The EcoCyc and MetaCyc databases. Nucleic Acids Res. 28, 56–59 (2000)

    Article  Google Scholar 

  38. Keener, J., Sneyd, J.: Mathematical Physiology. Springer, Berlin (1998)

    MATH  Google Scholar 

  39. Kielbassa, J., Bortfeldt, R., Schuster, S., Koch, I.: Modeling of the U1 snRNP assembly pathway in alternative splicing in human cells using Petri nets. Comput. Biol. Chem. 33(1), 46–61 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kitano, H.: Systems biology: a brief overview. Science 295, 1662–1664 (2002)

    Article  Google Scholar 

  41. Kindler, E., Pales, C.: 3D-Visualization of Petri net models: concept and realization. In: Proceedings of the 25th International Conference on Applications and Theory of Petri Nets, Bologna. Lecture Notes in Computer Science, vol. 3099, pp. 464–473. Springer, Berlin (2004)

    Google Scholar 

  42. Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems Biology in Practice. Wiley VCH, Weinheim (2006)

    Google Scholar 

  43. Klukas, C., Spies, K., Lange, M., et al.: Comparison of pathway visualisation tools. J. Integr. Bioinform. (2010, to appear)

    Google Scholar 

  44. Koch, I., Heiner, M.: Petri nets. In: Junker, B.H., Schreiber, F. (eds.) Biological Network Analysis, Wiley Book Series on Bioinformatics, pp. 139–180. Wiley, New York (2008). Chapter 7

    Chapter  Google Scholar 

  45. Koch, I., Kaden, F., Selbig, J.: Analysis of protein sheet topologies by graph-theoretical methods. Protein Struct. Funct. Genet. 12, 314–324 (1992)

    Article  Google Scholar 

  46. Koch, I., Junker, B.H., Heiner, M.: Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber. Bioinformatics 21(7), 1219–1226 (2005)

    Article  Google Scholar 

  47. Lehninger, A.L., Nelson, D.L., Cox, M.M.: Principles of Biochemistry. Worth Publisher, New York (2004)

    Google Scholar 

  48. Le Nov‘ere, N., Hucka, M., Mi, H., et al.: The systems biology graphical notation. Nat. Biotechnol. 27, 735–741 (2009)

    Article  Google Scholar 

  49. Matsuno, H., Fujita, S., Doi, A., Nagasaki, M., Miyano, S.: Towards biopathway modeling and simulation. In: Proc. ICATPN 2003. LNCS, vol. 2679, pp. 3–22. Springer, Berlin (2003)

    Google Scholar 

  50. May, P., Kreuchwig, A., Steinke, T., Koch, I.: PTGL: A data base for secondary structure-based protein topologies. Nucleic Acids Res. 38, D326–D330 (2010)

    Article  Google Scholar 

  51. Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri Net Representation of Gene Regulatory Network. In: Proceedings Pacific Symposium Biocomputing 2000, vol. 5, pp. 338–349 (2000)

    Google Scholar 

  52. Matsuno, H., Tanaka, Y., Aoshima, H., Doi, A., Matsui, M., Miyano, S.: Biopathway representation and simulation on hybrid functional Petri net. In Silico Biology 3(3), 389–404 (2003)

    Google Scholar 

  53. Matsuno, H., Inouye, S.-I.T., Okitsu, Y., Fujii, Y., Miyano, S.: A new regulatory interaction suggested by simulations for circadian genetic control mechanism in mammals. J. Bioinf. Comput. Biol. 4(1), 139–153 (2006)

    Article  Google Scholar 

  54. MGED society: Microarray Gene Expression Data Society. http://www.mged.org/

  55. Ng, A., Bursteinas, B., Gao, Q., Mollison, E., Zvelebil, M.: pSTIING: a ‘systems’ approach towards integrating signalling pathways, interaction and transcriptional regulatory networks in inflammation and cancer. Nucleic Acids Res. 34, D527–D534 (2006)

    Article  Google Scholar 

  56. Ng, A., Bursteinas, B., Gao, Q., Mollison, E., Zvelebil, M.: Resources for integrative systems biology: fromdata through databases to networks and dynamic systemmodels. Brief. Bioinform. 7(4), 318–330 (2006)

    Article  Google Scholar 

  57. Oliveira, J.S., Jones-Oliveira, J.B., Dixon, D.A., Bailey, C.G., Gull, D.W.: Hyperdigraph-theoretical analysis of the EGFR signaling network: initial steps leading to GTP: Ras complex formation. J. Comput. Biol. 11(5), 812–842 (2004)

    Article  Google Scholar 

  58. Palsson, B.Ø.: Systems Biology: Properties of Reconstructed Networks. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  59. Parkinson, H., Sarkans, U., Shojatalab, M., et al.: ArrayExpress—a public repository for microarray gene expression data at the EBI. Nucleic Acids Res. 33, D553–D555 (2005)

    Article  Google Scholar 

  60. Petri, C.A.: Communication with automata. Institut für Instrumentelle Mathematik, Bonn: Schriften des IIM 3 (1962) (in German)

    Google Scholar 

  61. Petri, C.A., Reisig, W.: Scholarpedia 3(4), 6477 (2008). http://www.scholarpedia.org/article/Petri_net

    Article  Google Scholar 

  62. Popova-Zeugmann, L., Heiner, M., Koch, I.: Time Petri nets for modelling and analysis of biochemical networks. Fundam. Inform. 67, 149–162 (2005)

    MathSciNet  MATH  Google Scholar 

  63. Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N.: Petri net representation in metabolic pathways. In: Proc. Int. Conf. Intell. Syst. Mol. Biol., vol. 1, pp. 328–336. MIT Press, Cambridge (1993)

    Google Scholar 

  64. Sackmann, A., Heiner, M., Koch, I.: Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinform. 7(1), 482 (2006)

    Article  Google Scholar 

  65. Sackmann, A., Formanowicz, D., Formanowicz, P., Koch, I., Blazewicz, J.: An analysis of the Petri net based model of the human body iron homeostasis process. Comput. Biol. Chem. 31, 1–10 (2007)

    Article  MATH  Google Scholar 

  66. Salwinski, L., Miller, C.S., Smith, A.J., et al.: The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 32, D449–D451 (2004)

    Article  Google Scholar 

  67. Systems Biology Ontology (2010), http://www.ebi.ac.uk/sbo/

  68. Schreiber, F., Dwyer, T., Marriott, K., Wybrow, M.: A generic algorithm for layout of biological networks. BMC Bioinform. 10, 375 (2009)

    Article  Google Scholar 

  69. Schuster, S., Marhl, M., Höfer, T.: Modelling of simple and complex calcium oscillations. Eur. J. Biochem. 269, 1333–1355 (2002)

    Article  Google Scholar 

  70. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)

    Article  Google Scholar 

  71. Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg, L.J., Eilbeck, K., Ireland, A., Mungall, C.J., The OBI Consortium, Leontis, N., Rocca-Serra, P., Ruttenberg, C.J., Sansone, S.-A., Scheuermann, R.H., Shah, N., Whetzel, P.L., Lewis, S.: The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25, 1251–1255 (2007)

    Article  Google Scholar 

  72. Snel, B., Lehmann, G., Bork, P., Huynen, M.A.: STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res. 28(18), 3442–3444 (2000)

    Article  Google Scholar 

  73. Spellman, P.T., Miller, M., Stewart, J., et al.: Design and implementation of microarray gene expression markup language (MAGE-ML). Genome Biol. 3(9), 46.1–46.9 (2002)

    Article  Google Scholar 

  74. Suderman, M., Hallett, M.: Tools for visually exploring biological networks. Bioinformatics 23(10), 2651–2659 (2007)

    Article  Google Scholar 

  75. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern. SMC-11(2), 109–125 (1981)

    Article  MathSciNet  Google Scholar 

  76. Systems Biology in Wikipedia (2009), http://technorganiac.wordpress.com/2007/10/14/functional-genomics-lipidomics/

  77. Szallai, Z., Stelling, J., Periwal, V.: System Modeling in Cellular Biology. MIT Press, Cambridge (2006)

    Google Scholar 

  78. Voss, K., Heiner, M., Koch, I.: Steady state analysis of metabolic pathways using Petri nets. In Silico Biol. 3, 367–387 (2003)

    Google Scholar 

  79. Windhager, L., Zimmer, R.: Intuitive modeling of dynamic systems with Petri nets and fuzzy logic. In: Proceedings German Conference on Bioinformatics. Lecture Notes in Informatics, pp. 106–115. Gesellschaft für Informatik, Bonn (2008)

    Google Scholar 

  80. Zanzoni, A., Montecchi-Palazzi, L., Quondam, M., et al.: MINT: a Molecular INTeraction database. FEBS Lett. 513, 135–140 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ina Koch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Koch, I., Schreiber, F. (2011). Introduction. In: Koch, I., Reisig, W., Schreiber, F. (eds) Modeling in Systems Biology. Computational Biology, vol 16. Springer, London. https://doi.org/10.1007/978-1-84996-474-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-474-6_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-473-9

  • Online ISBN: 978-1-84996-474-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics