Skip to main content

Analysis of Dynamical Models of Signaling Networks with Petri Nets and Dynamic Graphs

  • Chapter

Part of the book series: Computational Biology ((COBO,volume 16))

Abstract

The static representation of biological interaction networks can be misleading. All interactions do not occur simultaneously. On the other hand, differential equations can represent a dynamical system, but the topology of the interactions is not explicitly accessible from the calculations of system dynamics. To have a graph representation of a dynamical system, we have developed the dynamic graph. We used the Petri net representation of an ODE system and invariant analysis to identify the main components of a signaling network and thus bridge the two formalisms. The result is a method that can be used to analyze the dynamics of the network topology. Its main feature is the highlighting of the function and interactions of regulatory motifs in the emergence of a complex biological behavior. The example used here is the Bhalla–Iyengar model of the MAPK/PKC signaling pathway in fibroblasts. A property of this pathway is the ability to operate both in a monostable or bistable regime. We show with dynamic graphs that both the topology and the kinetics of this model are responsible for this behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Conservative invariant analysis was performed with the software Charlie, a companion tool of Snoopy.

References

  1. Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8(6), 450–461 (2007)

    Article  Google Scholar 

  2. Barabasi, A.-L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Genet. 5(2), 101–113 (2004)

    Google Scholar 

  3. Bhalla, U.S., Ram, P.T., Iyengar, R.: MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297(5583), 1018–1023 (2002)

    Article  Google Scholar 

  4. Breitling, R., Gilbert, D., Heiner, M., Orton, R.: A structured approach for the engineering of biochemical network models, illustrated for signalling pathways. Brief. Bioinform. 9(5), 404–421 (2008)

    Article  Google Scholar 

  5. Brondello, J.-M., Pouysségur, J., McKenzie, F.R.: Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science 286(5449), 2514–2517 (1999)

    Article  Google Scholar 

  6. Fages, F., Soliman, S.: From reaction models to influence graphs and back: a theorem. In: Formal Methods in Systems Biology. LNCS, vol. 5054, pp. 90–102. Springer, Berlin (2008)

    Chapter  Google Scholar 

  7. Gilbert, D., Heiner, M.: From Petri nets to differential equations—an integrative approach for biochemical network analysis. In: Petri Nets and Other Models of Concurrency. LNCS, vol. 4024, pp. 181–200. Springer, Berlin (2006)

    Google Scholar 

  8. Grunwald, S., Speer, A., Ackermann, J., Koch, I.: Petri net modelling of gene regulation of the Duchenne muscular dystrophy. Biosystems 92(2), 189–205 (2008)

    Article  Google Scholar 

  9. Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology. In: Formal Methods for Computational Systems Biology. LNCS, vol. 5016, pp. 215–264. Springer, Berlin (2008)

    Chapter  Google Scholar 

  10. Heiner, M., Richter, R., Schwarick, M.: Snoopy: a tool to design and animate/simulate graph-based formalisms. In: Proc. 1st Intern. Conf. Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, pp. 1–10 (2008)

    Google Scholar 

  11. Ingram, P., Stumpf, M., Stark, J.: Network motifs: structure does not determine function. BMC Genom. 7(1), 108 (2006)

    Article  Google Scholar 

  12. Kholodenko, B.N.: Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem. 267(6), 1583–1588 (2000)

    Article  Google Scholar 

  13. Koch, I., Junker, B.H., Heiner, M.: Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber. Bioinformatics 21(7), 1219–1226 (2005)

    Article  Google Scholar 

  14. Li, C., Suzuki, S., Ge, Q.-W., Nakata, M., Matsuno, H., Miyano, S.: Structural modeling and analysis of signaling pathways based on Petri nets. J. Bioinf. Comput. Biol. 4(5), 1119–1140 (2006)

    Article  Google Scholar 

  15. Lipshtat, A., Purushothaman, S.P., Iyengar, R., Ma’ayan, A.: Functions of bifans in context of multiple regulatory motifs in signaling networks. Biophys. J. 94(7), 2566–2579 (2008)

    Article  Google Scholar 

  16. Loew, L.M., Schaff, J.C.: The virtual cell: a software environment for computational cell biology. Trends Biotechnol. 19(10), 401–406 (2001)

    Article  Google Scholar 

  17. Ma’ayan, A.: Network integration and graph analysis in mammalian molecular systems biology. IET Syst. Biol. 2(5), 206–221 (2008)

    Article  Google Scholar 

  18. Ma’ayan, A., Iyengar, R.: From components to regulatory motifs in signalling networks. Brief. Funct. Genomics Proteomics 5(1), 57–61 (2006)

    Article  Google Scholar 

  19. Ma’ayan, A., Jenkins, S.L., Neves, S., Hasseldine, A., Grace, E., Dubin-Thaler, B., Eungdamrong, N.J., Weng, G., Ram, P.T., Rice, J.J., Kershenbaum, A., Stolovitzky, G.A., Blitzer, R.D., Iyengar, R.: Formation of regulatory patterns during signal propagation in a mammalian cellular network. Science 309(5737), 1078–1083 (2005)

    Article  Google Scholar 

  20. Mangan, S., Alon, U.: Structure and function of the feed-forward loop network motif. Proc. Natl. Acad. Sci. USA 100(21), 11980–11985 (2003)

    Article  Google Scholar 

  21. Mason, O., Verwoerd, M.: Graph theory and networks in Biology. IET Syst. Biol. 1(2), 89–119 (2007)

    Article  Google Scholar 

  22. Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri net representation of gene regulatory network. Proc. Pac. Symp. Biocomput. 5, 341–352 (2000)

    Google Scholar 

  23. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  24. Prill, R.J., Iglesias, P.A., Levchenko, A.: Dynamic properties of network motifs contribute to biological network organization. PLoS Biol. 3(11), e343 (2005)

    Article  Google Scholar 

  25. Sackmann, A., Heiner, M., Koch, I.: Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinform. 7(1), 482 (2006)

    Article  Google Scholar 

  26. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31(1), 64–68 (2002)

    Article  Google Scholar 

  27. Sivakumaran, S., Hariharaputran, S., Mishra, J., Bhalla, U.S.: The database of quantitative cellular signaling: management and analysis of chemical kinetic models of signaling networks. Bioinformatics 19(3), 408–415 (2003)

    Article  Google Scholar 

  28. Sun, H., Charles, C.H., Lau, L.F., Tonks, N.K.: MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell 75(3), 487–493 (1993)

    Article  Google Scholar 

  29. Ueki, K., Matsuda, S., Tobe, K., Gotoh, Y., Tamemoto, H., Yachi, M., Akanuma, Y., Yazaki, Y., Nishida, E., Kadowaki, T.: Feedback regulation of mitogen-activated protein kinase kinase kinase activity of c-Raf-1 by insulin and phorbol ester stimulation. J. Biol. Chem. 269(22), 15756–15761 (1994)

    Google Scholar 

  30. Vayttaden, S.J., Bhalla, U.S.: Developing complex signaling models using GENESIS/Kinetikit. Sci. STKE 2004(219), pl4 (2004)

    Google Scholar 

  31. Voss, K., Heiner, M., Koch, I.: Steady state analysis of metabolic pathways using Petri nets. In Silico Biol. 3, 367–387 (2003)

    Google Scholar 

  32. Weng, G., Bhalla, U.S., Iyengar, R.: Complexity in biological signaling systems. Science 284(5411), 92–96 (1999)

    Article  Google Scholar 

  33. Yamada, S., Shiono, S., Joo, A., Yoshimura, A.: Control mechanism of JAK/STAT signal transduction pathway. FEBS Let. 534(1–3), 190–196 (2003)

    Article  Google Scholar 

  34. Zevedei-Oancea, I., Schuster, S.: Topological analysis of metabolic networks based on Petri net theory. In Silico Biol. 3(3), 323–345 (2003)

    Google Scholar 

Download references

Acknowledgements

The work is supported by NIH grants GM072853 and P50GM071558 to R.I.S.H. holds NSERC Postdoctoral Fellowship BP-342902. The Virtual Cell is supported by NIH Grant Number P41RR013186 from the National Center for Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Hardy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Hardy, S., Iyengar, R. (2011). Analysis of Dynamical Models of Signaling Networks with Petri Nets and Dynamic Graphs. In: Koch, I., Reisig, W., Schreiber, F. (eds) Modeling in Systems Biology. Computational Biology, vol 16. Springer, London. https://doi.org/10.1007/978-1-84996-474-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-474-6_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-473-9

  • Online ISBN: 978-1-84996-474-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics