
Undergraduate Topics in Computer Science

Undergraduate Topics in Computer Science’ (UTiCS) delivers high-quality instructional content for
undergraduates studying in all areas of computing and information science. From core foundational
and theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and
modern approach and are ideal for self-study or for a one- or two-semester course. The texts are all
authored by established experts in their fields, reviewed by an international advisory board, and contain
numerous examples and problems. Many include fully worked solutions.

For other volumes:
http://www.springer.com/series/7592

and Design
Object-Oriented Analysis

Universities Press

Sarnath amnath nd rahma athan R a B D

Ian Mackie

Advisory board
Samson Abramsky, University of Oxford, UK
Chris Hankin, Imperial College London, UK

Andrew Pitts, University of Cambridge, UK
Hanne Riis Nielson, Technical University of Denmark, Denmark

Department of Computer Science
Sarnath Ramnath

USA
rsarnath@stcloudstate.edu

Brahma Dathan

and Computer Science

700 7th Street East

Metropolitan State University
L118 New Main

Department of Information

USA
Brahma.Dathan@metrostate.edu

ISBN 978-1-84996-521-7

Steven Skiena, Stony Brook University, USA
Iain Stewart, University of Durham, UK

Dexter Kozen, Cornell University, USA

e-ISBN 978-1-84996-522-4

Library of Congress Control Number: 2010934228

Printed on acid-free paper

St. Cloud State University

Series editor

ECC 139

55106 St. Paul, Minnesota

56303 St. Cloud, Minnesota

Undergraduate Topics in Computer Science ISSN 1863-7310

DOI 10.1007/978-1-84996-522-4

© Universities Press (India) Pvt. Ltd

Springer is part of Spr Science+Business Media (www.springer.com)

Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

A co-publication with the Universities Press (India) Pvt. Ltd, licensed for sale in all countries

Universities Press (India) Private Ltd.

outside of India, Pakistan, Bhutan, Bangladesh, Sri Lanka, Nepal, The Maldives, Middle East,
Malaysia, Indonesia and Singapore. Sold and distributed within these territories by the

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the
publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

inger

Contents

Preface xi

Part I Basic Object-Oriented Concepts 1

1 Introduction 3

1.1 What is Object-Oriented Development? 4

1.2 Key Concepts of Object-Oriented Design 5

1.3 Other Related Concepts 7

1.3.1 Modular design and encapsulation 7

1.3.2 Cohesion and coupling 7

1.3.3 Modifiability and testability 8

1.4 Benefits and Drawbacks of the Paradigm 9

1.5 History 10

1.6 Discussion and Further Reading 11

Exercises 11

2 Basics of Object-Oriented Programming 12

2.1 The Basics 12

2.2 Implementing Classes 15

2.2.1 Constructors 19

2.2.2 Printing an object 22

2.2.3 Static members 23

2.3 Programming with Multiple Classes 24

2.4 Interfaces 28

2.4.1 Implementation of StudentLinkedList 30

2.4.2 Array implementation of lists 33

2.5 Abstract Classes 36

2.6 Comparing Objects for Equality 37

2.7 A Notation for Describing Object-Oriented Systems 39

2.7.1 Class diagrams 42

2.7.2 Use cases and use case diagrams 43

2.7.3 Sequence diagrams 44

2.8 Discussion and Further Reading 47

Exercises 50

vi Object-Oriented Analysis, Design and Implementation: An Integrated Approach

3 Relationships between Classes 52

3.1 Association 53

3.1.1 Characteristics of associations 54

3.2 Inheritance 56

3.2.1 An example of a hierarchy 57

3.2.2 Inheriting from an interface 62

3.2.3 Polymorphism and dynamic binding 62

3.2.4 Protected fields and methods 69

3.2.5 The object class 71

3.3 Genericity 71

3.4 Discussion and Further Reading 73

3.4.1 A generalised notion of conformance 75

Exercises 78

4 Language Features for Object-Oriented Implementation 80

4.1 Organising the Classes 80

4.1.1 Creating the files 81

4.1.2 Packages 81

4.1.3 Protected access and package access 82

4.2 Collection Classes 83

4.3 Exceptions 84

4.4 Run-Time Type Identification 86

4.4.1 Reflection: Using the Class object 87

4.4.2 Using the instanceof operator 88

4.4.3 Downcasting 89

4.5 Graphical User Interfaces: Programming Support 90

4.5.1 The basics 90

4.5.2 Event handling 93

4.5.3 More on widgets and layouts 95

4.5.4 Drawing shapes 97

4.5.5 Displaying a piece of text 98

4.6 Long-Term Storage of Objects 98

4.6.1 Storing and retrieving objects 100

4.6.2 Issues in storing and retrieving objects 101

4.6.3 The Java serialization mechanism 104

4.7 Discussion and Further Reading 106

Exercises 109

Contents vii

Part II Introduction to Object-Oriented Analysis, Design,
Implementation and Refactoring 111

5 Elementary Design Patterns 113

5.1 Iterator 114

5.1.1 Iterator implementation 118

5.2 Singleton 121

5.2.1 Subclassing singletons 122

5.3 Adapter 125

5.4 Discussion and Further Reading 130

Exercises 132

6 Analysing a System 134

6.1 Overview of the Analysis Phase 135

6.2 Stage 1: Gathering the Requirements 136

6.2.1 Case study introduction 137

6.3 Functional Requirements Specification 139

6.3.1 Use case analysis 139

6.4 Defining Conceptual Classes and Relationships 150

6.5 Using the Knowledge of the Domain 158

6.6 Discussion and Further Reading 160

Exercises 163

7 Design and Implementation 167

7.1 Design 167

7.1.1 Major subsystems 168

7.1.2 Creating the software classes 169

7.1.3 Assigning responsibilities to the classes 171

7.1.4 Class diagrams 182

7.1.5 User interface 188

7.1.6 Data storage 188

7.2 Implementing Our Design 189

7.2.1 Setting up the interface 189

7.2.2 Adding new books 190

7.2.3 Issuing books 191

7.2.4 Printing transactions 194

7.2.5 Placing and processing holds 195

7.2.6 Storing and retrieving the library object 198

viii Object-Oriented Analysis, Design and Implementation: An Integrated Approach

7.3 Discussion and Further Reading 202

7.3.1 Conceptual, software and implementation classes 203

7.3.2 Building a commercially acceptable system 204

7.3.3 The facade pattern 205

7.3.4 Implementing singletons 207

7.3.5 Further reading 207

Exercises 208

8 How ‘Object-Oriented’ is Our Design? 210

8.1 Introduction 210

8.2 A First Example of Refactoring 211

8.2.1 A library that charges fines: Initial solution 211

8.2.2 Refactoring the solution 215

8.3 A Second Look at Remove Books 219

8.4 Using Generics to Refactor Duplicated Code 222

8.4.1 A closer look at the collection classes 222

8.4.2 Instantiating Catalog and MemberList 227

8.5 Discussion and Further Reading 229

Exercises 229

Part III Advanced Concepts in Object-Oriented Design 231

9 Exploring Inheritance 233

9.1 Introduction 233

9.2 Applications of Inheritance 234

9.2.1 Restricting behaviours and properties 234

9.2.2 Abstract superclass 234

9.2.3 Adding features 235

9.2.4 Hiding features of the superclass 236

9.2.5 Combining structural and type inheritance 237

9.3 Inheritance: Some Limitations and Caveats 237

9.3.1 Deep hierarchies 238

9.3.2 Lack of multiple inheritance 238

9.3.3 Changes in the superclass 238

9.3.4 Typing issues: The Liskov substitution principle 239

9.3.5 Addressing the limitations 242

9.4 Type Inheritance 243

9.4.1 A simple example 243

9.4.2 The cloneable interface 244

Contents ix

9.4.3 The runnable interface 248

9.5 Making Enhancements to the Library Class 250

9.5.1 A first attempt 250

9.5.2 Drawbacks of the above approach 254

9.6 Improving the Design 255

9.6.1 Designing the hierarchy 256

9.6.2 Invoking the constructors 258

9.6.3 Distributing the responsibilities 262

9.6.4 Factoring responsibilities across the hierarchy 264

9.7 Consequences of Introducing Inheritance 266

9.7.1 Exception handling 268

9.7.2 Adding new functionality to a hierarchy 269

9.8 Multiple Inheritance 273

9.8.1 Mechanisms for resolving conflicts 276

9.8.2 Repeated inheritance 277

9.8.3 Multiple inheritance in Java 281

9.9 Discussion and Further Reading 282

9.9.1 Design patterns that facilitate inheritance 283

9.9.2 Performance of object-oriented systems 284

Exercises 285

10 Modelling with Finite State Machines 287

10.1 Introduction 287

10.2 A Simple Example 287

10.3 Finite State Modelling 289

10.4 A First Solution to the Microwave Problem 291

10.4.1 Completing the analysis 291

10.4.2 Designing the system 293

10.4.3 The implementation classes 295

10.4.4 A critique of the above design 299

10.5 Using the State Pattern 301

10.5.1 Creating the state hierarchy 302

10.5.2 Implementation 307

10.6 Improving Communication between Objects 310

10.6.1 Loosely coupled communication 310

10.7 Redesign Using the Observer Pattern 312

10.7.1 Communication with the user 313

10.7.2 The improved design 315

10.8 Eliminating the Conditionals 315

x Object-Oriented Analysis, Design and Implementation: An Integrated Approach

10.8.1 Using the Java event mechanism 317

10.8.2 Using the context as a `switchboard' 320

10.8.3 Implementation 322

10.9 Designing GUI Programs Using the State Pattern 326

10.9.1 Design of a GUI system for the library 326

10.9.2 The context 330

10.10 Discussion and Further Reading 330

10.10.1 Implementing the state pattern 330

10.10.2 Features of the state pattern 331

10.10.3 Consequences of observer 332

10.10.4 Recognising and processing external events 333

10.10.5 Handling the events 334

Exercises 337

11 Interactive Systems and the MVC Architecture 339

11.1 Introduction 339

11.2 The MVC Architectural Pattern 340

11.2.1 Examples 342

11.2.2 Implementation 342

11.2.3 Benefits of the MVC pattern 344

11.3 Analysing a Simple Drawing Program 344

11.3.1 Specifying the requirements 345

11.3.2 Defining the use cases 345

11.4 Designing the System 348

11.4.1 Defining the model 348

11.4.2 Defining the controller 349

11.4.3 Selection and deletion 355

11.4.4 Saving and retrieving the drawing 355

11.5 Design of the Subsystems 356

11.5.1 Design of the model subsystem 356

11.5.2 Design of item and its subclasses 358

11.5.3 Design of the controller subsystem 365

11.5.4 Design of the view subsystem 367

11.6 Getting into the Implementation 370

11.6.1 Item and its subclasses 370

11.6.2 Implementation of the model class 372

11.6.3 Implementation of the controller class 373

11.6.4 Implementation of the view class 375

11.6.5 The driver program 378

Contents xi

11.6.6 A critique of our design 378

11.7 Implementing the Undo Operation 379

11.7.1 Employing the command pattern 383

11.7.2 Implementation 388

11.8 Drawing Incomplete Items 391

11.9 Adding a New Feature 394

11.10 Pattern-Based Solutions 399

11.10.1 Examples of architectural patterns 400

11.11 Discussion and Further Reading 402

11.11.1 Separating the view and the controller 402

11.11.2 The space overhead for the command pattern 403

11.11.3 How to store the items 403

11.11.4 Exercising caution when allowing undo 403

11.11.5 Synchronising updates 404

Exercises 405

12 Designing with Distributed Objects 408

12.1 Client/Server Systems 409

12.1.1 Basic architecture of client/server systems 409

12.2 Java Remote Method Invocation 411

12.2.1 Remote interfaces 413

12.2.2 Implementing a remote interface 413

12.2.3 Creating the server 415

12.2.4 The client 416

12.2.5 Setting up the system 417

12.3 Implementing an Object-Oriented System on the Web 418

12.3.1 HTML and Java servlets 418

12.3.2 Deploying the library system on the world-wide web 424

12.4 Discussion and Further Reading 446

Exercises 448

Appendix A: Java Essentials 449

A.1 Language Basics 449

A.2 A Simple Java Program 449

A.3 Primitive Data Types 452

A.4 Relational Operators 453

A.5 A Note on Input and Output 454

A.6 Selection Statements 455

A.7 Loops 457

xii Object-Oriented Analysis, Design and Implementation: An Integrated Approach

A.8 Methods 460

A.9 Arrays 460

Bibliography 463

Index 466

Preface

At least some people reading the title of this book may wonder why there should be

one more book on the topic of Object Oriented Analysis and Design (OOAD). The short

answer to this question is that in our teaching of the subject for over a decade, we have

not been able to find a suitable textbook on this topic at our respective universities.

We wrote up a long answer to the above question in a paper published in the 2008

SIGCSE conference. (So, if you are not satisfied with this preface, we hope you will

consider reading our paper.) To summarise some of the observations and experiences in

that paper, we note that our approach has always been to find ways to give a comprehensive

introduction to the field of OOAD. Over the years the field has become quite vast,

comprising diverse topics such as design process and principles, documentation tools

(Unified Modelling Language), refactoring and, design and architectural patterns. In our

experience, for most students the experience is incomplete without implementation, so,

that is one more addition to the laundry list of topics to be covered in the course.

It was impossible to find a single book that gave a balanced coverage of all these

topics in a manner that is understandable to the average college student. There are, of

course, a number of books, some of them profound, that cover one or more of the above

topics quite well. Besides their specialised nature, these books are primarily not meant

to be textbooks. Expecting our students to read parts of these books and assimilate the

material was not a realistic option for us.

This text is the result of our efforts over several years and provides the following:

1. A sound footing on object-oriented concepts such as classes, objects, interfaces,

inheritance, polymorphism, dynamic linking, etc.

2. A good introduction to the stage of requirements analysis.

3. Use of UML to document user requirements and design.

4. An extensive treatment of the design process. The design step is, arguably, the most

demanding activity (from an intellectual perspective) in the OOAD process. It is

thus imperative that the student go through the design of complete systems. For

pedagogical reasons we have kept the systems simple, yet sufficiently interesting to

offer design choices. Going through these design exercises should help the student

gain confidence to undertake reasonably complex designs.

5. Coverage of implementation issues. The reader will find critical excerpts from the

implementation in Java. But he/she would be well advised to remember that this is

not a book on Java. (More on this later.)

6. Appropriate use of design and architectural patterns.

7. Introduction to the art and craft of refactoring.

xiv Object-Oriented Analysis, Design and Implementation: An Integrated Approach

8. Pointers to resources that further the reader's knowledge.

It is important to remember what this book is not about.

1. It is not a book on Java. While the appendix has a short tutorial on the language and

most of the code in the book is in Java, we do not cover constructs for the sake of

teaching the language. Coverage is limited to the extent needed for understanding

the implementation and for highlighting object-oriented concepts.

2. It does not cover software engineering concepts such as project management, agile

technology, etc.

3. It does not treat UML extensively. Although we mention the various types of UML

diagrams, many of them are not expanded because an occasion does not arise for

such an undertaking.

4. It is not a catalog of design patterns or refactoring techniques. We cover only those

patterns that arise naturally in our case studies. It has been our experience that

design pattern discussions without a meaningful context are not well received by

students.

Who will find this book useful?

Although the material in this text has primarily evolved out of a course taught for computer

science senior undergraduates, others without a formal computer science background may

also find this handy. In our program, students taking this are expected to have completed

a course in data structures, but the material in this text does not require an intimate

knowledge of the intricacies of any of these. A programmer who has used and is familiar

with the APIs for some of the data structures could easily handle the material in the text.

However, a certain amount of maturity with the programming process is needed, and for

a typical undergraduate student this is usually obtained through a data structures course.

All the main case studies used for this book have been implemented by the authors

using Java. The text is liberally peppered with snippets of code wherever we felt that a

more `concrete' feel for the design would be helpful. Most of these snippets are short

and should be fairly self-explanatory and easy to read. Familiarity with a Java-like syntax

and a broad understanding of the structure of Java would certainly be extremely helpful.

The reader not familiar with Java but having significant software experience, need not,

however, be deterred by this and can get a good feel of the entire OOAD process even

without examining the code.

How to use this as computer science text

There clearly are several ways of structuring a computer science program, and the way

in which this text could be used would depend on that structure.

Preface xv

The text is divided into three parts:

• Part I provides a thorough coverage of object-oriented ideas.

• Part II introduces the concepts of object-oriented analysis, design, implementation

and, refactoring.

• Part III deals with more advanced design issues and approaches.

Part I, which comprises Chapters 1 through 4, gives a broad and solid foundation in

concepts that are central to OOAD. The amount of time spent on covering these materials

would vary considerably, depending on the program structure.

Part II begins in Chapter 5 with three useful design patterns. This part also includes

Chapters 6 through 8, which introduces the first case study involving the analysis, design,

and implementation of a simple library system. This is a critical choice since the entire

process of design is being introduced through this case study. We chose this application

because it met the following three major goals we had in selecting the case study: (i) the

system should be simple so that it can be covered from analysis to implementation in a

reasonable amount of time; (ii) students have an intuitive understanding of the application;

(iii) several areas can be `naturally' touched upon within the scope of the case study.

Several areas are touched upon in this case study and it would be pedagogically useful

to emphasise these in the classroom.

• The importance of (and the quirks associated with) precisely specifying requirements

and creating use case model.

• The design process. We naturally progress from the use case model to the the process

of identifying classes and assigning responsibilities and coming up with sequence

diagrams to implement use cases. The case study explores options in the design,

which can result in lively discussions and contribute to student learning.

• The data is stored on stable storage so as to give students a sense of completeness.

In this process, the student can see how the language quirks are affecting the

implementation.

• The case study incorporates several design patterns in the code: Facade, Iterator,

Adapter, Singleton, and Factory.

• Chapter 8 introduces refactoring and applies it to the completed design. This is

done to underscore the fact that an awareness of refactoring is integral to the design

process.

Covering this case study and assigning a similar project for students would be, in our

opinion, essential. The amount of time spent on discussing these materials would depend

on the background of the students.

Part III covers more advanced topics and spans Chapters 9 through 12.

Chapter 9 introduces the use of inheritance in design, and also extends the case study. The

xvi Object-Oriented Analysis, Design and Implementation: An Integrated Approach

use of inheritance was deliberately avoided in the main case study, not only to keep the

case study simple, but also to ensure that the issues associated with the use of inheritance

can be dealt with in context. The extension involves some inheritance hierarchies that

allow us to illustrate sound object-oriented principles including the Liskov Substitution

Principle and the Open–Closed Principle. A natural extension to the library system case

study leads to a discussion of the Visitor pattern.

Chapter 10 deals with the second case study, which is from the domain of electronic

devices that are controlled by software. Our example concerns a microwave oven that

allows the user to perform the most common functions. To keep the case study manageable

we have restricted the microwave functionality, but the model is enough for our purpose.

Here we introduce the concept of states, finite state machines and state transition diagrams

and compare and contrast it with the use case model. In this context, we introduce the

State and Observer patterns.

The third case study, in Chapter 11, is an interactive program that can be used for

creating figures. The objective here is to also examine the creation of larger systems that

may require decomposition into subsystems. Before presenting the case study, the student

is familiarised with the Model{View{Controller architecture. During the course of the

case study, the student learns the Bridge, Command, and Composite patterns.

Chapter 12 shows how to design an object-oriented system for a distributed environ-

ment. As more and more applications become available remotely, we believe it is important

for students to learn how to design and implement a distributed, object-oriented system.

We have focused on Java Remote Method Invocation and the implementation of web-

based systems using Java Servlets. To keep the discussion within reasonable size, we have

left out other technologies such as ASP.NET and some important topics such as CORBA

and distributed garbage collection.

Normally, while each case study is being discussed, we expect students to work on

similar projects. This may be adapted as necessary to suit each situation. Presenting the

topics in this integrated manner using case studies has been very helpful in giving students

a complete picture of the OOAD process. We hope that by writing this textboot we have,

in some small way, contribute to the advancement of the discipline.

Acknowledgments

The following individuals at Universities Press and Springer deserve special thanks:

Madhu Reddy, Manoj Karthikeyan and Beverley Ford for help with the negotiations

and the contract, and Sreelatha Menon for her efficient editorial work.

Brahma Dathan would like to thank his wife, Asha, and children, Anupama and Alok,

for their support during the several years it took to complete this project.

Sarnath would like to thank his family, friends and colleagues for their encouragement

and support during the years he worked on the project.

Preface xvii

The authors would like to thank Dr Bina Ramamurhty for her helpful suggestions on

an early draft of the book.

As we mentioned earlier, the book was shaped by our experience in teaching the subject

over a fairly long period of time. Although the courses have stabilised now, the current

form does not resemble much the original version taught a decade, or even four years

ago. We experimented with the topics (adding, deleting, emphasising, de-emphasising and

rearranging) and changed the pedagogical approach, moving from a theory-first-practice-

later approach to a more case-study-based approach. Needless to say, we did all this at

the expense of our students, but they took it all in good spirit. Many of our students also

provided valuable, creative criticisms on different versions of the manuscript of the book.

We cannot thank our students, past and present, enough!

Brahma Dathan

Sarnath Ramnath

	Object-Oriented Analysis and Design
	Contents
	Preface
	Who will find this book useful?
	How to use this as computer science text
	Acknowledgments

