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Preface

At least some people reading the title of this book may wonder why there should be

one more book on the topic of Object Oriented Analysis and Design (OOAD). The short

answer to this question is that in our teaching of the subject for over a decade, we have

not been able to find a suitable textbook on this topic at our respective universities.

We wrote up a long answer to the above question in a paper published in the 2008

SIGCSE conference. (So, if you are not satisfied with this preface, we hope you will

consider reading our paper.) To summarise some of the observations and experiences in

that paper, we note that our approach has always been to find ways to give a comprehensive

introduction to the field of OOAD. Over the years the field has become quite vast,

comprising diverse topics such as design process and principles, documentation tools

(Unified Modelling Language), refactoring and, design and architectural patterns. In our

experience, for most students the experience is incomplete without implementation, so,

that is one more addition to the laundry list of topics to be covered in the course.

It was impossible to find a single book that gave a balanced coverage of all these

topics in a manner that is understandable to the average college student. There are, of

course, a number of books, some of them profound, that cover one or more of the above

topics quite well. Besides their specialised nature, these books are primarily not meant

to be textbooks. Expecting our students to read parts of these books and assimilate the

material was not a realistic option for us.

This text is the result of our efforts over several years and provides the following:

1. A sound footing on object-oriented concepts such as classes, objects, interfaces,

inheritance, polymorphism, dynamic linking, etc.

2. A good introduction to the stage of requirements analysis.

3. Use of UML to document user requirements and design.

4. An extensive treatment of the design process. The design step is, arguably, the most

demanding activity (from an intellectual perspective) in the OOAD process. It is

thus imperative that the student go through the design of complete systems. For

pedagogical reasons we have kept the systems simple, yet sufficiently interesting to

offer design choices. Going through these design exercises should help the student

gain confidence to undertake reasonably complex designs.

5. Coverage of implementation issues. The reader will find critical excerpts from the

implementation in Java. But he/she would be well advised to remember that this is

not a book on Java. (More on this later.)

6. Appropriate use of design and architectural patterns.

7. Introduction to the art and craft of refactoring.
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8. Pointers to resources that further the reader's knowledge.

It is important to remember what this book is not about.

1. It is not a book on Java. While the appendix has a short tutorial on the language and

most of the code in the book is in Java, we do not cover constructs for the sake of

teaching the language. Coverage is limited to the extent needed for understanding

the implementation and for highlighting object-oriented concepts.

2. It does not cover software engineering concepts such as project management, agile

technology, etc.

3. It does not treat UML extensively. Although we mention the various types of UML

diagrams, many of them are not expanded because an occasion does not arise for

such an undertaking.

4. It is not a catalog of design patterns or refactoring techniques. We cover only those

patterns that arise naturally in our case studies. It has been our experience that

design pattern discussions without a meaningful context are not well received by

students.

Who will find this book useful?

Although the material in this text has primarily evolved out of a course taught for computer

science senior undergraduates, others without a formal computer science background may

also find this handy. In our program, students taking this are expected to have completed

a course in data structures, but the material in this text does not require an intimate

knowledge of the intricacies of any of these. A programmer who has used and is familiar

with the APIs for some of the data structures could easily handle the material in the text.

However, a certain amount of maturity with the programming process is needed, and for

a typical undergraduate student this is usually obtained through a data structures course.

All the main case studies used for this book have been implemented by the authors

using Java. The text is liberally peppered with snippets of code wherever we felt that a

more `concrete' feel for the design would be helpful. Most of these snippets are short

and should be fairly self-explanatory and easy to read. Familiarity with a Java-like syntax

and a broad understanding of the structure of Java would certainly be extremely helpful.

The reader not familiar with Java but having significant software experience, need not,

however, be deterred by this and can get a good feel of the entire OOAD process even

without examining the code.

How to use this as computer science text

There clearly are several ways of structuring a computer science program, and the way

in which this text could be used would depend on that structure.
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The text is divided into three parts:

• Part I provides a thorough coverage of object-oriented ideas.

• Part II introduces the concepts of object-oriented analysis, design, implementation

and, refactoring.

• Part III deals with more advanced design issues and approaches.

Part I, which comprises Chapters 1 through 4, gives a broad and solid foundation in

concepts that are central to OOAD. The amount of time spent on covering these materials

would vary considerably, depending on the program structure.

Part II begins in Chapter 5 with three useful design patterns. This part also includes

Chapters 6 through 8, which introduces the first case study involving the analysis, design,

and implementation of a simple library system. This is a critical choice since the entire

process of design is being introduced through this case study. We chose this application

because it met the following three major goals we had in selecting the case study: (i) the

system should be simple so that it can be covered from analysis to implementation in a

reasonable amount of time; (ii) students have an intuitive understanding of the application;

(iii) several areas can be `naturally' touched upon within the scope of the case study.

Several areas are touched upon in this case study and it would be pedagogically useful

to emphasise these in the classroom.

• The importance of (and the quirks associated with) precisely specifying requirements

and creating use case model.

• The design process. We naturally progress from the use case model to the the process

of identifying classes and assigning responsibilities and coming up with sequence

diagrams to implement use cases. The case study explores options in the design,

which can result in lively discussions and contribute to student learning.

• The data is stored on stable storage so as to give students a sense of completeness.

In this process, the student can see how the language quirks are affecting the

implementation.

• The case study incorporates several design patterns in the code: Facade, Iterator,

Adapter, Singleton, and Factory.

• Chapter 8 introduces refactoring and applies it to the completed design. This is

done to underscore the fact that an awareness of refactoring is integral to the design

process.

Covering this case study and assigning a similar project for students would be, in our

opinion, essential. The amount of time spent on discussing these materials would depend

on the background of the students.

Part III covers more advanced topics and spans Chapters 9 through 12.

Chapter 9 introduces the use of inheritance in design, and also extends the case study. The



xvi Object-Oriented Analysis, Design and Implementation: An Integrated Approach

use of inheritance was deliberately avoided in the main case study, not only to keep the

case study simple, but also to ensure that the issues associated with the use of inheritance

can be dealt with in context. The extension involves some inheritance hierarchies that

allow us to illustrate sound object-oriented principles including the Liskov Substitution

Principle and the Open–Closed Principle. A natural extension to the library system case

study leads to a discussion of the Visitor pattern.

Chapter 10 deals with the second case study, which is from the domain of electronic

devices that are controlled by software. Our example concerns a microwave oven that

allows the user to perform the most common functions. To keep the case study manageable

we have restricted the microwave functionality, but the model is enough for our purpose.

Here we introduce the concept of states, finite state machines and state transition diagrams

and compare and contrast it with the use case model. In this context, we introduce the

State and Observer patterns.

The third case study, in Chapter 11, is an interactive program that can be used for

creating figures. The objective here is to also examine the creation of larger systems that

may require decomposition into subsystems. Before presenting the case study, the student

is familiarised with the Model{View{Controller architecture. During the course of the

case study, the student learns the Bridge, Command, and Composite patterns.

Chapter 12 shows how to design an object-oriented system for a distributed environ-

ment. As more and more applications become available remotely, we believe it is important

for students to learn how to design and implement a distributed, object-oriented system.

We have focused on Java Remote Method Invocation and the implementation of web-

based systems using Java Servlets. To keep the discussion within reasonable size, we have

left out other technologies such as ASP.NET and some important topics such as CORBA

and distributed garbage collection.

Normally, while each case study is being discussed, we expect students to work on

similar projects. This may be adapted as necessary to suit each situation. Presenting the

topics in this integrated manner using case studies has been very helpful in giving students

a complete picture of the OOAD process. We hope that by writing this textboot we have,

in some small way, contribute to the advancement of the discipline.
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