Skip to main content

Quantum Private Comparison Based on Delegating Quantum Computation

  • Conference paper
  • First Online:
Book cover Cloud Computing and Security (ICCCS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11065))

Included in the following conference series:

  • 2262 Accesses

Abstract

Based on delegating quantum computation (DQC) model, a two-party quantum private comparison protocol with single photons is proposed, and it is also generalized to the multi-party case. In the protocols, the clients’ inputs are firstly encrypted with the shared keys, and then sent to quantum center (QC) to perform quantum computation, i.e., the CNOT operations with which QC can get the comparison result. By utilizing the DQC model, clients with limited quantum resources can delegate semi-honest QC to perform quantum comparison of equality, besides their information sequences are encrypted and transmitted only once. Analysis shows that out protocols have very good security, low communication complexity and high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE Press, New York (1984)

    Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  MathSciNet  Google Scholar 

  3. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  MathSciNet  Google Scholar 

  4. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)

    Article  Google Scholar 

  5. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  Google Scholar 

  6. Liu, W.J., Chen, H.W., Ma, T.H., Li, Z.Q., Liu, Z.H., Hu, W.B.: An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication. Chin. Phys. B 18(10), 4105–4109 (2009)

    Article  Google Scholar 

  7. Liu, Z.H., Chen, H.W.: Cryptanalysis and improvement of quantum broadcast communication and authentication protocol with a quantum one-time pad. Chin. Phys. B 25(8), 080308 (2016)

    Article  Google Scholar 

  8. Liu, W.J., Wang, F., Ji, S., Qu, Z.G., Wang, X.J.: Attacks and improvement of quantum sealed-bid auction with EPR pairs. Commun. Theor. Phys. 61(6), 686–690 (2014)

    Article  Google Scholar 

  9. Liu, W.J., et al.: Multiparty quantum sealed-bid auction using single photons as message carrier. Quantum Inf. Process. 15(2), 869–879 (2016)

    Article  MathSciNet  Google Scholar 

  10. Liu, W.J., Chen, Z.F., Liu, C., Zheng, Y.: Improved deterministic N-to-one joint remote preparation of an arbitrary qubit via EPR pairs. Int. J. Theor. Phys. 54(2), 472–483 (2015)

    Article  Google Scholar 

  11. Wang, H.B., Zhou, X.Y., An, X.X., Cui, M.M., Fu, D.S.: Deterministic joint remote preparation of a four-qubit cluster-type state via GHZ states. Int. J. Theor. Phys. 55(8), 3588–3596 (2016)

    Article  MathSciNet  Google Scholar 

  12. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149–1150 (2004)

    Article  Google Scholar 

  13. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on quantum key agreement protocol with maximally entangled states. Int. J. Theor. Phys. 50(6), 1793–1802 (2011)

    Article  Google Scholar 

  14. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283(6), 1192–1195 (2010)

    Article  Google Scholar 

  15. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)

    Article  MathSciNet  Google Scholar 

  16. Chen, X.-B., Xu, G., Niu, X.-X., Wen, Q.-Y., Yang, Y.-X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)

    Article  Google Scholar 

  17. Tseng, H.Y., Jason, L., Tzonelih, H.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)

    Article  MathSciNet  Google Scholar 

  18. Sun, Z.S., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52(1), 212–218 (2013)

    Article  MathSciNet  Google Scholar 

  19. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284(12), 3160–3163 (2011)

    Article  Google Scholar 

  20. Liu, B., Xiao, D., Huang, W., et al.: Quantum private comparison employing single-photon interference. Quantum Inf. Process. 16(7), 180 (2017)

    Article  MathSciNet  Google Scholar 

  21. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A: Atom., Mol. Opt. Phys. 56(2), 1154–1162 (1997)

    Article  Google Scholar 

  22. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS 1982), Washington, DC (1982)

    Google Scholar 

  23. Broadbent, A.: Delegating private quantum computations. Can. J. Phys. 93(9), 941–946 (2015)

    Article  Google Scholar 

  24. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information 10th Anniversary Edition, vol. 21, no. 1, pp. 1–59 (2010)

    Google Scholar 

  25. Fisher, K.A., et al.: Quantum computing on encrypted data. Nat. Commun. 5(2), 3074 (2013)

    Google Scholar 

  26. Zhao, Z.W., Naseri, M., Zheng, Y.Q.: Secure quantum sealed-bid auction with post-confirmation. Opt. Commun. 283(16), 3194–3197 (2010)

    Article  Google Scholar 

  27. Olejnik, L.: Secure quantum private information retrieval using phase-encoded queries. Phys. Rev. A 84(2), 022313 (2011)

    Article  Google Scholar 

  28. Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83(2), 022301 (2011)

    Article  Google Scholar 

  29. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation of China (Grant Nos. 61373131 and 61373016), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the University Science Research Project of Jiangsu Province (Grant No. 16KJB520030), the National Training Program of Innovation and Entrepreneurship for Undergraduates (Grant No. 201610300024Z), the Natural Science Foundation of Jiangsu Province(Grant No. BK20171458), and the Six Talent Peaks Project of Jiangsu Province (Grant No. 2015-XXRJ-013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Pan, D., Liu, W. (2018). Quantum Private Comparison Based on Delegating Quantum Computation. In: Sun, X., Pan, Z., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2018. Lecture Notes in Computer Science(), vol 11065. Springer, Cham. https://doi.org/10.1007/978-3-030-00012-7_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00012-7_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00011-0

  • Online ISBN: 978-3-030-00012-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics