Skip to main content

Attack on Deep Steganalysis Neural Networks

  • Conference paper
  • First Online:
Cloud Computing and Security (ICCCS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11066))

Included in the following conference series:

Abstract

Deep neural networks (DNN) have achieved state-of-art performance on image classification and pattern recognition in recent years, and also show its power on steganalysis field. But research revealed that the DNN can be easily fooled by adversarial examples generated by adding perturbation to input. Deep steganalysis neural networks have the same potential threat as well. In this paper we discuss and analysis two different attack methods and apply the methods in attacking on deep steganalysis neural networks. We defined the model and propose the concrete attack steps, the result shows that the two methods have 96.02% and 90.25% success ratio separately on the target DNN. Thus, the adversarial example attack is valid for deep steganalysis neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bas, P., Filler, T., Pevný, T.: “Break our steganographic system”: the ins and outs of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 59–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24178-9_5

    Chapter  Google Scholar 

  2. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

    Article  Google Scholar 

  3. Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)

    Article  Google Scholar 

  4. Fridrich, J., Kodovský, J., Holub, V., Goljan, M.: Breaking HUGO – the process discovery. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 85–101. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24178-9_7

    Chapter  Google Scholar 

  5. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Kodovskỳ, J., Fridrich, J.: On completeness of feature spaces in blind steganalysis. In: Proceedings of the 10th ACM Workshop on Multimedia and Security, pp. 123–132. ACM (2008)

    Google Scholar 

  8. Kurak, C., McHugh, J.: A cautionary note on image downgrading. In: Eighth Annual Computer Security Applications Conference, Proceedings, pp. 153–159. IEEE (1992)

    Google Scholar 

  9. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world. arXiv preprint arXiv:1607.02533 (2016)

  10. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). http://yann.lecun.com/exdb/mnist/

  11. Luo, X., et al.: Steganalysis of HUGO steganography based on parameter recognition of syndrome-trellis-codes. Multimedia Tools Appl. 75(21), 13557–13583 (2016)

    Article  Google Scholar 

  12. Ma, Y., Luo, X., Li, X., Bao, Z., Zhang, Y.: Selection of rich model steganalysis features based on decision rough set \(\alpha \)-positive region reduction. IEEE Trans. Circuits Syst. Video Technol. (2018)

    Google Scholar 

  13. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. arXiv preprint (2017)

    Google Scholar 

  14. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 427–436 (2015)

    Google Scholar 

  15. Pibre, L., Pasquet, J., Ienco, D., Chaumont, M.: Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover sourcemismatch. Electron. Imaging 2016(8), 1–11 (2016)

    Article  Google Scholar 

  16. Qian, Y., Dong, J., Wang, W., Tan, T.: Deep learning for steganalysis via convolutional neural networks. In: Media Watermarking, Security, and Forensics, vol. 9409, p. 94090J. International Society for Optics and Photonics (2015)

    Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  18. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  19. Su, J., Vargas, D.V., Kouichi, S.: One pixel attack for fooling deep neural networks. arXiv preprint arXiv:1710.08864 (2017)

  20. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  21. Upham, D.: Jsteg. Software available at ftp. funet.fi (1997)

    Google Scholar 

  22. Wang, J., Li, T., Shi, Y.Q., Lian, S., Ye, J.: Forensics feature analysis in quaternion wavelet domain for distinguishing photographic images and computer graphics. Multimedia Tools Appl. 76(22), 23721–23737 (2017)

    Article  Google Scholar 

  23. Winkler, S., Mohandas, P.: The evolution of video quality measurement: From psnr to hybrid metrics. IEEE Trans. Broadcast. 54(3), 660–668 (2008)

    Article  Google Scholar 

  24. Wu, S., Zhong, S.H., Liu, Y.: A novel convolutional neural network for image steganalysis with shared normalization. arXiv preprint arXiv:1711.07306 (2017)

  25. Xu, G., Wu, H.Z., Shi, Y.Q.: Structural design of convolutional neural networks for steganalysis. IEEE Signal Process. Lett. 23(5), 708–712 (2016)

    Article  Google Scholar 

  26. Ye, J., Ni, J., Yi, Y.: Deep learning hierarchical representations for image steganalysis. IEEE Trans. Inf. Forensics Secur. 12(11), 2545–2557 (2017)

    Article  Google Scholar 

  27. Zhang, Y., Qin, C., Zhang, W., Liu, F., Luo, X.: On the fault-tolerant performance for a class of robust image steganography. Signal Process. (2018)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Key Research Development Program of China (2016QY01W0200), the National Natural Science Foundation of China NSFC (U1636101, U1636219, U1736211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengpan Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, S., Ye, D., Jiang, S., Liu, C., Niu, X., Luo, X. (2018). Attack on Deep Steganalysis Neural Networks. In: Sun, X., Pan, Z., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2018. Lecture Notes in Computer Science(), vol 11066. Springer, Cham. https://doi.org/10.1007/978-3-030-00015-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00015-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00014-1

  • Online ISBN: 978-3-030-00015-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics