Skip to main content

Construction of Geometric Structure by Oritatami System

  • Conference paper
  • First Online:
DNA Computing and Molecular Programming (DNA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11145))

Included in the following conference series:

Abstract

Self-assembly is the process where smaller components autonomously assemble to form a larger and more complex structure. One of the application areas of self-assembly is engineering and production of complicated nanostructures. Recently, researchers proposed a new folding model called the oritatami model (OM) that simulates the cotranscriptional self-assembly, based on the kinetics on the final shape of folded molecules. Nanostructures in oritatami system (OS) are represented by a sequence of beads and interactions on the lattice. We propose a method to design a general OS, which we call GEOS, that constructs a given geometric structure. The main idea is to design small modular OSs, which we call hinges, for every possible pair of adjacent points in the target structure. Once a shape filling curve for the target structure is ready, we construct an appropriate primary structure that follows the curve by a sequence of hinges. We establish generalized guidelines on designing a GEOS, and propose two GEOSs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adleman, L., Cheng, Q., Goel, A., Huang, M.-D., Wasserman, H.: Linear self-assemblies: equilibria, entropy, and convergence rates. In: Proceedings of the 6th International Conference on Difference Equations and Applications, pp. 51–60 (2001)

    Google Scholar 

  2. Bhuvana, T., Smith, K.C., Fisher, T.S., Kulkarni, G.U.: Self-assembled CNT circuits with ohmic contacts using Pd hexadecanethiolate as in situ solder. Nanoscale 1(2), 271–275 (2009)

    Article  Google Scholar 

  3. Demaine, E.D., et al.: Know when to fold ’em: self-assembly of shapes by folding in oritatami. In: Doty, D., Dietz, H. (eds.): DNA 2018. LNCS, vol. 11145, pp. 19–36. Springer, Cham (2018)

    Google Scholar 

  4. Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T., Summers, S.M., Woods, D.: The tile assembly model is intrinsically universal. In: Proceedings of the IEEE 53rd Annual Symposium on Foundations of Computer Science, pp. 302–310 (2012)

    Google Scholar 

  5. Eichen, Y., Braun, E., Sivan, U., Ben-Yoseph, G.: Self-assembly of nanoelectronic components and circuits using biological templates. Acta Polym. 49(10–11), 663–670 (1998)

    Article  Google Scholar 

  6. Geary, C., Meunier, P., Schabanel, N., Seki, S.: Efficient universal computation by greedy molecular folding. CoRR, abs/1508.00510 (2015)

    Google Scholar 

  7. Geary, C., Meunier, P., Schabanel, N., Seki, S.: Programming biomolecules that fold greedily during transcription. In: Proceedings of the 41st International Symposium on Mathematical Foundations of Computer Science, pp. 43:1–43:14 (2016)

    Google Scholar 

  8. Geary, C., Rothemund, P.W.K., Andersen, E.S.: A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 345, 799–804 (2014)

    Article  Google Scholar 

  9. Gordon, V.S., Orlovich, Y.L., Werner, F.: Hamiltonian properties of triangular grid graphs. Discret. Math. 308(24), 6166–6188 (2008)

    Article  MathSciNet  Google Scholar 

  10. Han, Y.-S., Kim, H.: Ruleset optimization on isomorphic oritatami systems. In: Brijder, R., Qian, L. (eds.) DNA 2017. LNCS, vol. 10467, pp. 33–45. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66799-7_3

    Chapter  Google Scholar 

  11. Han, Y., Kim, H., Ota, M., Seki, S.: Nondeterministic seedless oritatami systems and hardness of testing their equivalence. Nat. Comput. 17(1), 67–79 (2018)

    Article  MathSciNet  Google Scholar 

  12. Han, Y.-S., Kim, H., Rogers, T.A., Seki, S.: Self-attraction removal from oritatami systems. In: Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp. 164–176. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60252-3_13

    Chapter  MATH  Google Scholar 

  13. Li, J., Fan, C., Pei, H., Shi, J., Huang, Q.: Smart drug delivery nanocarriers with self-assembled DNA nanostructures. Adv. Mater. 25(32), 4386–4396 (2013)

    Article  Google Scholar 

  14. Masuda, Y., Seki, S., Ubukata, Y.: Towards the algorithmic molecular self-assembly of fractals by cotranscriptional folding. In: Câmpeanu, C. (ed.) CIAA 2018. LNCS, vol. 10977, pp. 261–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94812-6_22

    Chapter  Google Scholar 

  15. Ota, M., Seki, S.: Rule set design problems for oritatami systems. Theor. Comput. Sci. 671, 26–35 (2017)

    Article  MathSciNet  Google Scholar 

  16. Pistol, C., Lebeck, A.R., Dwyer, C.: Design automation for DNA self-assembled nanostructures. In: Proceedings of the 43rd ACM/IEEE Design Automation Conference, pp. 919–924 (2006)

    Google Scholar 

  17. Rogers, T.A., Seki, S.: Oritatami system; a survey and the impossibility of simple simulation at small delays. Fundamenta Informaticae 154(1–4), 359–372 (2017)

    Article  MathSciNet  Google Scholar 

  18. Santis, E.D., Ryadnov, M.G.: Self-assembling peptide motifs for nanostructure design and applications. Amino Acids Peptides Proteins 40, 199–238 (2016)

    Google Scholar 

  19. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J. Comput. 36(6), 1544–1569 (2007)

    Article  MathSciNet  Google Scholar 

  20. Verma, G., Hassan, P.A.: Self assembled materials: design strategies and drug delivery perspectives. Phys. Chem. Chem. Phys. 15(40), 17016–17028 (2013)

    Article  Google Scholar 

  21. Whitesides, G.M., Boncheva, M.: Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. U.S.A. 99(8), 4769–4774 (2002)

    Article  Google Scholar 

  22. Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. thesis, California Institute of Technology (1998)

    Google Scholar 

Download references

Acknowledgements

This work has been supported in part by the NIH grant R01 GM109459.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwee Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, YS., Kim, H. (2018). Construction of Geometric Structure by Oritatami System. In: Doty, D., Dietz, H. (eds) DNA Computing and Molecular Programming. DNA 2018. Lecture Notes in Computer Science(), vol 11145. Springer, Cham. https://doi.org/10.1007/978-3-030-00030-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00030-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00029-5

  • Online ISBN: 978-3-030-00030-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics