Skip to main content

Black-Box Model Explained Through an Assessment of Its Interpretable Features

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 909))

Abstract

Algorithms are powerful and necessary tools behind a large part of the information we use every day. However, they may introduce new sources of bias, discrimination and other unfair practices that affect people who are unaware of it. Greater algorithm transparency is indispensable to provide more credible and reliable services. Moreover, requiring developers to design transparent algorithm-driven applications allows them to keep the model accessible and human understandable, increasing the trust of end users. In this paper we present EBAnO, a new engine able to produce prediction-local explanations for a black-box model exploiting interpretable feature perturbations. EBAnO exploits the hypercolumns representation together with the cluster analysis to identify a set of interpretable features of images. Furthermore two indices have been proposed to measure the influence of input features on the final prediction made by a CNN model. EBAnO has been preliminary tested on a set of heterogeneous images. The results highlight the effectiveness of EBAnO in explaining the CNN classification through the evaluation of interpretable features influence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schmidhuber, J.: Deep learning in neural networks: an overview. CoRR abs/1404.7828 (2014). http://arxiv.org/abs/1404.7828

  2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, NIPS 2012, vol. 1, pp. 1097–1105. Curran Associates Inc., USA (2012). http://dl.acm.org/citation.cfm?id=2999134.2999257

  3. Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning, ICML 2008, pp. 160–167. ACM, New York (2008). http://doi.acm.org/10.1145/1390156.1390177

  4. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

    Google Scholar 

  5. Strannegård, C., Häggström, O., Wessberg, J., Balkenius, C.: Transparent neural networks. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS (LNAI), vol. 7716, pp. 302–311. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35506-6_31

    Chapter  Google Scholar 

  6. Zhang, Q., Wu, Y.N., Zhu, S.: Interpretable convolutional neural networks. CoRR abs/1710.00935 (2017). http://arxiv.org/abs/1710.00935

  7. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  8. Hariharan, B., Arbeláez, P.A., Girshick, R.B., Malik, J.: Hypercolumns for object segmentation and fine-grained localization. CoRR abs/1411.5752 (2014). http://arxiv.org/abs/1411.5752

  9. Juang, B.H., Rabiner, L.R.: The segmental k-means algorithm for estimating parameters of hidden Markov models. IEEE Trans. Acoust. Speech Signal Process. 38(9), 1639–1641 (1990)

    Article  Google Scholar 

  10. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014). http://arxiv.org/abs/1409.1556

  11. Hariharan, B., Arbelaez, P., Girshick, R.B., Malik, J.: Simultaneous detection and segmentation. CoRR abs/1407.1808 (2014). http://arxiv.org/abs/1407.1808

  12. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras

  13. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/

  14. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Lepri, B., Staiano, J., Sangokoya, D., Letouzé, E., Oliver, N.: The tyranny of data? The bright and dark sides of data-driven decision-making for social good. CoRR abs/1612.00323 (2016). http://arxiv.org/abs/1612.00323

  16. Diakopoulos, N.: Enabling accountability of algorithmic media: transparency as a constructive and critical lens. In: Cerquitelli, T., Quercia, D., Pasquale, F. (eds.) Transparent Data Mining for Big and Small Data. SBD, vol. 11, pp. 25–43. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54024-5_2

    Chapter  Google Scholar 

  17. Datta, A., Sen, S., Zick, Y.: Algorithmic transparency via quantitative input influence: theory and experiments with learning systems. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 598–617, May 2016

    Google Scholar 

  18. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?": explaining the predictions of any classifier. CoRR abs/1602.04938 (2016). http://arxiv.org/abs/1602.04938

  19. Alufaisan, Y., Kantarcioglu, M., Zhou, Y.: Detecting discrimination in a black-box classifier (2016)

    Google Scholar 

  20. Adler, P., et al.: Auditing black-box models for indirect influence. Knowl. Inf. Syst. 54, 1–28 (2017)

    Google Scholar 

  21. Fong, R., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. CoRR abs/1704.03296 (2017). http://arxiv.org/abs/1704.03296

  22. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. CoRR abs/1312.6034 (2013). http://arxiv.org/abs/1312.6034

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francesco Ventura , Tania Cerquitelli or Francesco Giacalone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ventura, F., Cerquitelli, T., Giacalone, F. (2018). Black-Box Model Explained Through an Assessment of Its Interpretable Features. In: Benczúr, A., et al. New Trends in Databases and Information Systems. ADBIS 2018. Communications in Computer and Information Science, vol 909. Springer, Cham. https://doi.org/10.1007/978-3-030-00063-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00063-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00062-2

  • Online ISBN: 978-3-030-00063-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics