Skip to main content

Acquiring Knowledge of Object Arrangements from Human Examples for Household Robots

  • Conference paper
  • First Online:
KI 2018: Advances in Artificial Intelligence (KI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11117))

Abstract

Robots are becoming ever more present in households, interacting more with humans. They are able to perform tasks in an accurate manner, e.g. manipulating objects. However, this manipulation often does not follow the human way to arrange objects. Therefore, robots require semantic knowledge about the environment for executing tasks and satisfying humans’ expectations. In this paper, we will introduce a breakfast table setting scenario where a robot acquires information from human demonstrations to arrange objects in a meaningful way. We will show how robots can obtain the necessary amount of knowledge to autonomously perform daily tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akgun, B., Subramanian, K.: Robot learning from demonstration: kinesthetic teaching vs. teleoperation (2011)

    Google Scholar 

  2. Beetz, M., et al.: Cognition-enabled autonomous robot control for the realization of home chore task intelligence. Proc. IEEE 100(8), 2454–2471 (2012)

    Article  Google Scholar 

  3. Beetz, M., Beßler, D., Haidu, A., Pomarlan, M., Bozcuoglu, A., Bartels, G.: KnowRob 2.0 - a 2nd generation knowledge processing framework for cognition-enabled robotic agents. In: Proceedings of International Conference on Robotics and Automation (ICRA) (2018)

    Google Scholar 

  4. Billard, A., Calinon, S., Dillmann, R., Schaal, S.: Robot programming by demonstration. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1371–1389. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-30301-5_60. Chap. 59

    Chapter  Google Scholar 

  5. Chernova, S., Thomaz, A.L.: Introduction. In: Robot Learning from Human Teachers, pp. 1–4. Morgan & Claypool (2014). Chap. 1

    Google Scholar 

  6. Evrard, R., Gribovskaya, E., Calinon, S., Billard, A., Kheddar, A.: Teaching physical collaborative tasks: object-lifting case study with a humanoid. In: IEEE/RAS International Conference on Humanoid Robots, Humanoids, November 2009

    Google Scholar 

  7. Haidu, A., Beetz, M.: Action recognition and interpretation from virtual demonstrations. In: International Conference on Intelligent Robots and Systems (IROS), Daejeon, South Korea, pp. 2833–2838 (2016)

    Google Scholar 

  8. Jiang, Y., Saxena, A.: Hallucinating humans for learning robotic placement of objects. In: Desai, J., Dudek, G., Khatib, O., Kumar, V. (eds.) Experimental Robotics, vol. 88, pp. 921–937. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-319-00065-7_61

    Chapter  Google Scholar 

  9. Krontiris, A., Krontiris, K.E.: Efficiently solving general rearrangement tasks: a fast extension primitive for an incremental sampling-based planner. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3924–3931, May 2016

    Google Scholar 

  10. Kunze, L., Haidu, A., Beetz, M.: Acquiring task models for imitation learning through games with a purpose. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 102–107, November 2013

    Google Scholar 

  11. Lee, J.: A survey of robot learning from demonstrations for human-robot collaboration. ArXiv e-prints, October 2017

    Google Scholar 

  12. Ramirez-Amaro, K., Beetz, M., Cheng, G.: Automatic segmentation and recognition of human activities from observation based on semantic reasoning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp, 5043–5048, September 2014

    Google Scholar 

  13. Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S., Abbeel, P.: Combined task and motion planning through an extensible planner-independent interface layer. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2376–2387, May 2014

    Google Scholar 

  14. Tamosiunaite, M., Nemec, B., Ude, A., Wörgötter, F.: Learning to pour with a robot arm combining goal and shape learning for dynamic movement primitives. Robot. Auton. Syst. 59, 910–922 (2011)

    Article  Google Scholar 

  15. Winkler, J., Tenorth, M., Bozcuoğlu, A.K., Beetz, M.: CRAMm - memories for robots performing everyday manipulation activities. Adv. Cogn. Syst. 3, 47–66 (2014)

    Google Scholar 

Download references

Acknowledgements

This work is partially funded by Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Center 1320, EASE. Lisset Salinas Pinacho and Alexander Wich acknowledge support from the German Academic Exchange Service (DAAD) and the Don Carlos Antonio López (BECAL) PhD scholarships, respectively. We also thank Matthias Schneider for his help in the revision of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisset Salinas Pinacho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salinas Pinacho, L., Wich, A., Yazdani, F., Beetz, M. (2018). Acquiring Knowledge of Object Arrangements from Human Examples for Household Robots. In: Trollmann, F., Turhan, AY. (eds) KI 2018: Advances in Artificial Intelligence. KI 2018. Lecture Notes in Computer Science(), vol 11117. Springer, Cham. https://doi.org/10.1007/978-3-030-00111-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00111-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00110-0

  • Online ISBN: 978-3-030-00111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics