Skip to main content

Evolutionary Structure Minimization of Deep Neural Networks for Motion Sensor Data

  • Conference paper
  • First Online:
KI 2018: Advances in Artificial Intelligence (KI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11117))

  • 1231 Accesses

Abstract

Many Deep Neural Networks (DNNs) are implemented with the single objective to achieve high classification scores. However, there can be additional objectives like the minimization of computational costs. This is especially important in the field of mobile computing where not only the computational power itself is a limiting factor but also each computation consumes energy affecting the battery life. Unfortunately, the determination of minimal structures is not straightforward.

In our paper, we present a new approach to determine DNNs employing reduced structures. The networks are determined by an Evolutionary Algorithm (EA). After the DNN is trained, the EA starts to remove neurons from the network. Thereby, the fitness function of the EA is depending on the accuracy of the DNN. Thus, the EA is able to control the influence of each individual neuron. We introduce our new approach in detail. Thereby, we employ motion data recorded by accelerometer and gyroscope sensors of a mobile device. The data are recorded while drawing Japanese characters in the air in a learning context. The experimental results show that our approach is capable to determine reduced networks with similar performance to the original ones. Additionally, we show that the reduction can improve the accuracy of a network. We analyze the reduction in detail. Further, we present arising structures of the reduced networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asher, J.J.: The total physical response approach to second language learning*. Mod. Lang. J. 53(1), 3–17 (1969)

    Google Scholar 

  2. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, Heidelberg (2007)

    Google Scholar 

  3. Bolger, D.J., Perfetti, C.A., Schneider, W.: Cross-cultural effect on the brain revisited: universal structures plus writing system variation. Hum. Brain Mapp. 25(1), 92–104 (2005)

    Article  Google Scholar 

  4. Cun, Y.L., Denker, J.S., Solla, S.A.: Advances in neural information processing systems. In: Optimal Brain Damage, vol. 2, pp. 598–605. Morgan Kaufmann Publishers Inc., San Francisco (1990)

    Google Scholar 

  5. Deng, L., Yu, D.: Deep learning: methods and applications. Found. Trends Signal Process. 7, 197–387 (2014)

    Article  MathSciNet  Google Scholar 

  6. Denil, M., Shakibi, B., Dinh, L., Ranzato, M., de Freitas, N.: Predicting parameters in deep learning. In: Proceedings of the 26th International Conference on Neural Information Processing Systems. NIPS 2013, vol. 2, pp. 2148–2156. Curran Associates Inc., New York (2013)

    Google Scholar 

  7. Denton, E., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear structure within convolutional networks for efficient evaluation. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. NIPS 2014, vol. 1, pp. 1269–1277. MIT Press, Cambridge (2014)

    Google Scholar 

  8. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05094-1

    Book  MATH  Google Scholar 

  9. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org

  10. Haarmann, H.: Symbolic Values of Foreign Language Use: From the Japanese Case to a General Sociolinguistic Perspective, Contributions to the Sociology of Language, vol. 51. Mouton de Gruyter, Berlin, New York (1989)

    Book  Google Scholar 

  11. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural network with pruning, trained quantization and Huffman coding. CoRR abs/1510.00149 (2015)

    Google Scholar 

  12. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for efficient neural networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. NIPS 2015, vol. 1, pp. 1135–1143. MIT Press, Cambridge (2015)

    Google Scholar 

  13. Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J., Larranaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms, pp. 75–102. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-32494-1_4

    Chapter  Google Scholar 

  14. Hanson, S.J., Pratt, L.Y.: Comparing biases for minimal network construction with back-propagation. In: Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems, vol. 1, pp. 177–185. Morgan-Kaufmann, San Mateo (1989)

    Google Scholar 

  15. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015)

    Google Scholar 

  17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014)

    Google Scholar 

  19. Bergmann, K., Macedonia, M.: A virtual agent as vocabulary trainer: iconic gestures help to improve learners’ memory performance. In: Aylett, R., Krenn, B., Pelachaud, C., Shimodaira, H. (eds.) IVA 2013. LNCS (LNAI), vol. 8108, pp. 139–148. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40415-3_12

    Chapter  Google Scholar 

  20. Kramer, O.: Evolution of convolutional highway networks. In: Sim, K., Kaufmann, P. (eds.) EvoApplications 2018. LNCS, vol. 10784, pp. 395–404. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77538-8_27

    Chapter  Google Scholar 

  21. Loshchilov, I., Hutter, F.: CMA-ES for hyperparameter optimization of deep neural networks. CoRR abs/1604.07269 (2016)

    Google Scholar 

  22. Lückehe, D., Kramer, O.: Alternating optimization of unsupervised regression with evolutionary embeddings. In: Mora, A.M., Squillero, G. (eds.) EvoApplications 2015. LNCS, vol. 9028, pp. 471–480. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16549-3_38

    Chapter  Google Scholar 

  23. Lückehe, D., Wagner, M., Kramer, O.: Constrained evolutionary wind turbine placement with penalty functions. In: IEEE Congress on Evolutionary Computation. CEC, pp. 4903–4910 (2016)

    Google Scholar 

  24. Macedonia, M., Mueller, K.: Exploring the neural representation of novel words learned through enactment in a word recognition task. Front. Psychol. 7, 953 (2016)

    Article  Google Scholar 

  25. Mandischer, M.: Representation and evolution of neural networks. In: Albrecht, R.F., Reeves, C.R., Steele, N.C. (eds.) Artificial Neural Nets and Genetic Algorithms, pp. 643–649. Springer, Vienna (1993). https://doi.org/10.1007/978-3-7091-7533-0_93

    Chapter  Google Scholar 

  26. Manessi, F., Rozza, A., Bianco, S., Napoletano, P., Schettini, R.: Automated pruning for deep neural network compression. CoRR abs/1712.01721 (2017)

    Google Scholar 

  27. Morse, G., Stanley, K.O.: Simple evolutionary optimization can rival stochastic gradient descent in neural networks. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016. GECCO 2016, pp. 477–484. ACM, New York (2016)

    Google Scholar 

  28. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on International Conference on Machine Learning. ICML2010, pp. 807–814. Omnipress, Madison (2010)

    Google Scholar 

  29. Olson, D., Delen, D.: Advanced Data Mining Techniques. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-76917-0

    Book  MATH  Google Scholar 

  30. Saito, H., Masuda, H., Kawakami, M.: Form and sound similarity effects in kanji recognition. In: Leong, C.K., Tamaoka, K. (eds.) Cognitive Processing of the Chinese and the Japanese languages. Neuropsychology and Cognition, vol. 14, pp. 169–203. Springer, Dordrecht and London (1998). https://doi.org/10.1007/978-94-015-9161-4_9

    Chapter  Google Scholar 

  31. Schmidhuber, J.: Deep learning in neural networks: an overview. CoRR abs/1404.7828 (2014)

    Google Scholar 

  32. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009)

    Article  Google Scholar 

  34. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  35. Szegedy, C., et al.: Going deeper with convolutions. In: Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  36. van Aacken, S.: What motivates l2 learners in acquisition of kanji using call: a case study. Comput. Assist. Lang. Learn. 12(2), 113–136 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lückehe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lückehe, D., Veith, S., von Voigt, G. (2018). Evolutionary Structure Minimization of Deep Neural Networks for Motion Sensor Data. In: Trollmann, F., Turhan, AY. (eds) KI 2018: Advances in Artificial Intelligence. KI 2018. Lecture Notes in Computer Science(), vol 11117. Springer, Cham. https://doi.org/10.1007/978-3-030-00111-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00111-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00110-0

  • Online ISBN: 978-3-030-00111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics