Skip to main content

Probabilistic Belief Revision via Similarity of Worlds Modulo Evidence

  • Conference paper
  • First Online:
KI 2018: Advances in Artificial Intelligence (KI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11117))

Abstract

Similarity among worlds plays a pivotal role in providing the semantics for different kinds of belief change. Although similarity is, intuitively, a context-sensitive concept, the accounts of similarity presently proposed are, by and large, context blind. We propose an account of similarity that is context sensitive, and when belief change is concerned, we take it that the epistemic input provides the required context. We accordingly develop and examine two accounts of probabilistic belief change that are based on such evidence-sensitive similarity. The first switches between two extreme behaviors depending on whether or not the evidence in question is consistent with the current knowledge. The second gracefully changes its behavior depending on the degree to which the evidence is consistent with current knowledge. Finally, we analyze these two belief change operators with respect to a select set of plausible postulates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In general, we write \(B^*_\alpha \) to mean the (the result of) revision of B with \(\alpha \) by application of operator \(*\).

  2. 2.

    Similar axioms of distance have been adopted in mathematics and psychology for a long time.

  3. 3.

    The term separability has been defined differently by different authors.

  4. 4.

    Other interpretations of expansion in the probabilistic setting may be considered in the future.

References

  1. Lewis, D.: Probabilities of conditionals and conditional probabilities. Philos. Rev. 85(3), 297–315 (1976)

    Article  Google Scholar 

  2. Ramachandran, R., Nayak, A.C., Orgun, M.A.: Belief erasure using partial imaging. In: Li, J. (ed.) AI 2010. LNCS (LNAI), vol. 6464, pp. 52–61. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17432-2_6

    Chapter  Google Scholar 

  3. Chhogyal, K., Nayak, A., Schwitter, R., Sattar, A.: Probabilistic belief revision via imaging. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS (LNAI), vol. 8862, pp. 694–707. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13560-1_55

    Chapter  Google Scholar 

  4. Mishra, S., Nayak, A.: Causal basis for probabilistic belief change: distance vs. closeness. In: Sombattheera, C., Stolzenburg, F., Lin, F., Nayak, A. (eds.) MIWAI 2016. LNCS (LNAI), vol. 10053, pp. 112–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49397-8_10

    Chapter  Google Scholar 

  5. Rens, G., Meyer, T., Casini, G.: On revision of partially specified convex probabilistic belief bases. In: Kaminka, G., Fox, M., Bouquet, P., Dignum, V., Dignum, F., Van Harmelen, F. (eds.) Proceedings of the Twenty-Second European Conference on Artificial Intelligence (ECAI-2016), The Hague, The Netherlands, pp. 921–929. IOS Press, September 2016

    Google Scholar 

  6. Gärdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States. MIT Press, Cambridge (1988)

    MATH  Google Scholar 

  7. Ashby, F.G., Ennis, D.M.: Similarity measures. Scholarpedia 2(12), 4116 (2007)

    Article  Google Scholar 

  8. Choi, S.S., Cha, S.H., Tappert, C.: A survey of binary similarity and distance measures. Syst. Cybern. Inform. 8(1), 43–48 (2010)

    Google Scholar 

  9. Shepard, R.: Toward a universal law of generalization for psychological science. Science 237(4820), 1317–1323 (1987)

    Article  MathSciNet  Google Scholar 

  10. Jäkel, F., Schölkopf, B., Wichmann, F.: Similarity, kernels, and the triangle inequality. J. Math. Psychol. 52(5), 297–303 (2008). http://www.sciencedirect.com/science/article/pii/S0022249608000278

    Article  MathSciNet  Google Scholar 

  11. Yearsley, J.M., Barque-Duran, A., Scerrati, E., Hampton, J.A., Pothos, E.M.: The triangle inequality constraint in similarity judgments. Prog. Biophys. Mol. Biol. 130(Part A), 26–32 (2017). http://www.sciencedirect.com/science/article/pii/S0079610716301341. Quantum information models in biology: from molecular biology to cognition

  12. Dubois, D., Moral, S., Prade, H.: Belief change rules in ordinal and numerical uncertainty theories. In: Dubois, D., Prade, H. (eds.) Belief Change, vol. 3, pp. 311–392. Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-011-5054-5_8

    Chapter  MATH  Google Scholar 

  13. Voorbraak, F.: Probabilistic belief change: expansion, conditioning and constraining. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, UAI 1999, San Francisco, CA, USA, pp. 655–662. Morgan Kaufmann Publishers Inc. (1999). http://dl.acm.org/citation.cfm?id=2073796.2073870

  14. Lehmann, D., Magidor, M., Schlechta, K.: Distance semantics for belief revision. J. Symb. Log. 66(1), 295–317 (2001)

    Article  MathSciNet  Google Scholar 

  15. Jaynes, E.: Where do we stand on maximum entropy? In: The Maximum Entropy Formalism, pp. 15–118. MIT Press (1978)

    Google Scholar 

  16. Paris, J., Vencovská, A.: In defense of the maximum entropy inference process. Int. J. Approx. Reason. 17(1), 77–103 (1997). http://www.sciencedirect.com/science/article/pii/S0888613X97000145

    Article  MathSciNet  Google Scholar 

  17. Kern-Isberner, G.: Revising and updating probabilistic beliefs. In: Williams, M.A., Rott, H. (eds.) Frontiers in Belief Revision, Applied Logic Series, vol. 22, pp. 393–408. Kluwer Academic Publishers/Springer, Dordrecht (2001). https://doi.org/10.1007/978-94-015-9817-0_20

    Chapter  Google Scholar 

  18. Beierle, C., Finthammer, M., Potyka, N., Varghese, J., Kern-Isberner, G.: A framework for versatile knowledge and belief management. IFCoLog J. Log. Appl. 4(7), 2063–2095 (2017)

    Google Scholar 

  19. Chan, H., Darwiche, A.: On the revision of probabilistic beliefs using uncertain evidence. Artif. Intell. 163, 67–90 (2005)

    Article  MathSciNet  Google Scholar 

  20. Grove, A., Halpern, J.: Updating sets of probabilities. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, UAI 1998, San Francisco, CA, USA, pp. 173–182. Morgan Kaufmann (1998). http://dl.acm.org/citation.cfm?id=2074094.2074115

  21. Mork, J.C.: Uncertainty, credal sets and second order probability. Synthese 190(3), 353–378 (2013). https://doi.org/10.1007/s11229-011-0042-2

    Article  MathSciNet  MATH  Google Scholar 

  22. Boutilier, C.: On the revision of probabilistic belief states. Notre Dame J. Form. Log. 36(1), 158–183 (1995)

    Article  MathSciNet  Google Scholar 

  23. Makinson, D.: Conditional probability in the light of qualitative belief change. Philos. Log. 40(2), 121–153 (2011)

    Article  MathSciNet  Google Scholar 

  24. Chhogyal, K., Nayak, A., Sattar, A.: Probabilistic belief contraction: considerations on epistemic entrenchment, probability mixtures and KL divergence. In: Pfahringer, B., Renz, J. (eds.) AI 2015. LNCS (LNAI), vol. 9457, pp. 109–122. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26350-2_10

    Chapter  Google Scholar 

  25. Zhuang, Z., Delgrande, J., Nayak, A., Sattar, A.: A unifying framework for probabilistic belief revision. In: Bacchus, F. (ed.) Proceedings of the Twenty-fifth International Joint Conference on Artificial Intelligence (IJCAI 2017), pp. 1370–1376. AAAI Press, Menlo Park (2017). https://doi.org/10.24963/ijcai.2017/190

  26. Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet contraction and revision functions. J. Symb. Log. 50(2), 510–530 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Gavin Rens was supported by a Clause Leon Foundation postdoctoral fellowship while conducting this research. This research has been partially supported by the Australian Research Council (ARC), Discovery Project: DP150104133. This work is based on research supported in part by the National Research Foundation of South Africa (Grant number UID 98019). Thomas Meyer has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agr. No. 690974.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin Rens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rens, G., Meyer, T., Kern-Isberner, G., Nayak, A. (2018). Probabilistic Belief Revision via Similarity of Worlds Modulo Evidence. In: Trollmann, F., Turhan, AY. (eds) KI 2018: Advances in Artificial Intelligence. KI 2018. Lecture Notes in Computer Science(), vol 11117. Springer, Cham. https://doi.org/10.1007/978-3-030-00111-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00111-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00110-0

  • Online ISBN: 978-3-030-00111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics