
Adaptive Learning for Learn-Based
Regression Testing

David Huistra(B), Jeroen Meijer, and Jaco van de Pol

Formal Methods and Tools, University of Twente, Enschede, The Netherlands
{d.j.huistra,j.j.g.meijer,j.c.vandepol}@utwente.nl

Abstract. Regression testing is an important activity to prevent the
introduction of regressions into software updates. Learn-based testing
can be used to automatically check new versions of a system for regres-
sions on a system level. This is done by learning a model of the system
and model checking this model for system property violations.

Learning the model of a large system can take an unpractical amount
of time however. In this work we investigate if the concept of adaptive
learning can improve the learning speed of a model in a regression testing
scenario.

We have performed several experiments with this technique on two
systems: ToDoMVC and SSH. We find that there can be a large benefit
to using adaptive learning. In addition we find three main factors that
influence the benefit of adaptive learning. There are however also some
shortcomings to adaptive learning that should be investigated further.

1 Introduction

Successful software systems are often continuously updated throughout their life
cycle [1]. Updates to the system often extend or alter the functionality. These
changes occasionally unintentionally alter the behavior of existing functionality.
This is what we call a regression.

In order to detect regressions, it is important to test from them [2]. Regres-
sions can occur at many different levels of functionality, such as unit or system
level.

In practice, regression testing is mostly performed on unit level. Here each
code unit is tested independently. Unit testing techniques enjoy a lot of popu-
larity, as it has proven to be an efficient way to identify regressions and it can
be automated to test each version of a system [3].

In this work we focus on a testing technique for system level testing called
Learn-Based Testing (LBT) [4]. The LBT testing technique is based on model
checking and capable of identifying different type of regressions than unit testing.
In addition it can also be automated to test each software version for system
level regressions.

D. Huistra, J. Meijer—Supported by STW SUMBAT grant: 13859.
J. van de Pol—Supported by the 3TU.BSR project.

c© Springer Nature Switzerland AG 2018
F. Howar and J. Barnat (Eds.): FMICS 2018, LNCS 11119, pp. 162–177, 2018.
https://doi.org/10.1007/978-3-030-00244-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00244-2_11&domain=pdf


Adaptive Learning for Learn-Based Regression Testing 163

Importance of automated testing. To understand why automated testing is
important for regression testing, it is important to understand the nature of
regression testing. In regression testing there are often only a small number of
regressions to be found compared to the amount of functionality that is being
tested. Therefore, regression testing often requires a big effort to find only a few
regressions. In practice, this means that for many testing techniques, the effort
required to apply them is not considered worth the possible reward.

This is however were automated testing stands out. Another aspect of regres-
sion testing is that it tends to happen periodically. A lot of versions of the system
will all need to be tested for the same regressions. Unit testing can be setup to
take advantage of this fact and automatically test all versions in the same man-
ner. The initial setup of writing all unit tests will still require quite a bit of effort,
but after this it can be used to test each version with minimal manual effort.

Our hypothesis is that LBT has the same advantages as unit testing, but
enables regression testing at the system level. The purpose of this paper is to
investigate the use of LBT in the context of regression testing.

How LBT works. The core concept of LBT is to learn a behavioural model of the
system. Such a model describes how the system reacts to sequences of inputs.
Using such a model the system can then be tested for regressions.

Identifying regressions is done by determining if (the model of) a system
adheres to a set of predefined system properties. This can be performed auto-
matically by giving a set of properties and a model to a model checker such as
LTSmin [5].

Interaction bottleneck. Learning the behavioural model of a system can be per-
formed automatically. A learning algorithm will interact with the system by
performing sequences of actions and observing the outputs. Given a set of input-
output combinations a model hypothesis can be constructed.

However, depending on the size of a system (i.e. the amount of interaction
required) and how fast interaction with the system is, learning a model can take
a significant amount of time. For larger systems the learning time can make the
approach unpractical.

To combat this issue, there is an active area of research on the topic of
reducing the amount of interaction required with the system. There have been
a number of techniques proposed that can be used to reduce the amount of
interaction required, such as better learning algorithms or caching mechanisms.

Adaptive learning. When learning a model in the context of regression testing
however, there is a specific technique that we believe can aid in reducing the
time required to learn a model. We call this technique adaptive learning [6].

When performing regression testing on a system, in all but the first testing
of the system, there is a previous regression test of the same system. In the
previous regression testing of the system, the model of a previous version of the
system was already learned. In most cases, the previous system is very similar to



164 D. Huistra et al.

the updated system in terms of behavior. Therefore, the models of these systems
will likely also be very similar.

With adaptive learning we want to reuse information about the system
learned during the previous test to speed up the new test. Conceptually this
is done by ‘adapting’ the existing model to the updated system.

Our contribution. There is however little known about the effectiveness of this
technique. Therefore we wanted to study how much benefit can be gained from
using adaptive learning when learning the model of a system in a regression
testing context.

In this work we setup an experiment to determine the benefit of adaptive
learning when learning a system in a regression testing context. We also discuss
several factors we found that influence the benefit of adaptive learning.

We find that in the right situations there can be a large benefit to using
adaptive learning. There are however also still some shortcomings that should
be investigated further.

Outline. In Sect. 2 we first give more background information about the adaptive
learning technique and learning the model of a system in general. In Sect. 3 we
then discuss the experiments we performed with adaptive learning and show
the outcome. We discuss the main factors that influence the benefit of adaptive
learning that we identified in Sect. 4. In the discussion Sect. 5 we discuss the
shortcomings of adaptive learning and the experiments and propose what should
be done to improve upon this work. Finally in Sect. 6 we conclude this work by
summarizing our findings.

2 Background

In this section we explain the technique of adaptive learning. Before that we
introduce the reader with the concept of automatically learning a behavioral
model of a system called active automata learning.

2.1 Active Automata Learning

In active automata learning, a learning algorithm is given a set of actions it can
perform and asked to produce a model that describes the behaviour of a system
[7]. It does this by interacting with the system through the set of actions it has
been given and observing the outputs. Based on this interaction it will try to
determine what states there are in the system and what the result is of applying
each action in each state. With this information it will then construct a model
hypothesis.

The difficulty lies in determining if all states have been identified. The learner
could try all infinite sequences of actions, but this does not scale very well.
Therefore the learning algorithm is designed to interact with the system until



Adaptive Learning for Learn-Based Regression Testing 165

it has found a consistent set of observations and then produce a minimal model
hypothesis.

To determine if the learner has identified all possible states, the model
hypothesis is then given to a so called teacher. The teacher will determine if
the hypothesis is correct or not. If the hypothesis is not correct, it will return
its findings to the learner so the learner can improve the model.

There are different ways to implement the learner and the teacher. These
different implementations influence the benefit that can be gained from using
adaptive learning.

Learning Algorithms. In general the learning algorithms work by constructing
an observation table while interacting with the system. The rows of an obser-
vation table are (possible) access sequences to the different states of the system
that have been discovered. The columns are separating sequences that are used
to distinguish states from each other.

The learner will add access and/or separating sequences to the table when
it finds inconsistent observations. When the observations in the table are con-
sidered consistent, the learner will construct a model hypothesis. If the learner
receives a counterexample back from the teacher it will add this observation to
the table and extend the observation table to make it consistent for all observa-
tions.

When and how separating sequences are added to the observation table
depends on the specific learner implementation. We look at two implementa-
tions: L* and R&S.

– The idea of L* [8] is that it will try to learn as much from a counterexample
as possible. It will therefore add all prefixes of the counterexample to the
observation. By doing this it may find more new states and avoid work of
the teacher, but it will require more interaction with the system to fill the
observation table.

– R&S [9] will only add a minimal version of the counterexample to the obser-
vation table. This keeps the observation table small but reduces the chance
of finding additional states from one counter-example.

In addition to observation table based learners, there are also discrimination-
tree based learners. These learners are however not yet compatible with adaptive
learning, as is discussed in the next section.

Teacher Algorithms. The teacher algorithm is given a model hypothesis and
asked to determine if this hypothesis is correct. It does this by attempting to
find a counterexample, a sequence of actions that produces a different result in
the system compared to in the model. It will try a large set of sequences to see if
they are a counterexample. If it cannot find a counterexample, it will determine
that the hypothesis is correct.



166 D. Huistra et al.

What sequences and how many sequences the teacher will try depends on
the specific implementation. We distinguish between two: the WMethod and
RandomWord method.

– The WMethod [10] is an FSM testing method which requires that an upper
bound on the number of states is known and systematically tries to find a
difference between a hypothesis and a system.

– The RandomWord algorithm will generate a random set of sequences that it
will try out on the system. The amount and length of the sequences is given
by the user. If the output of the system deviates from the system for one of
these sequences, a counterexample is found. Otherwise the model is finalized.

2.2 Adaptive Learning

A learning algorithm will iteratively try to discover all states of a system by
extending the access and separating sequences. Once it is able to distinguish
between all states using those sequences, it can fill the observation table and
construct a model hypothesis.

A large amount of the learning effort goes into discovering all the states of
a system. But in a regression testing scenario, an updated version of a system
will generally still have most of the states of the previous version. Adaptive
learning attempts to reuse knowledge about the states of a system from a previ-
ously learned model. This should reduce the amount of effort that goes into the
discovery of the states.

After a system is changed, we do now know how the states have changed.
So how can we give a learner information about the possible states of a system,
even though these states might not exist anymore? In related work there have
been two techniques proposed to steer the learning using an older model.

The first is the approach called Adaptive Model Checking by Groce et al. [6].
Their approach is based on calculating the access and separating sequences from
an existing model. This information is then added to the observation table before
the learner starts interacting with the system. After this the learner will proceed
as normal by filling the observation table and constructing a model hypothesis.

The second approach is part of the Active Continuous Quality Control app-
roach by Windmüller et al. [11]. The key idea of this approach is to extract the
set of separating sequences from the old observation table and add these to the
table of the new learner, and then proceed as normal.

They have found that this approach works well for the R&S learning algo-
rithm suggested by Rivest and Schapire [9]. In this learning algorithm each coun-
terexample is used to extend the set of separating sequences with exactly one
element. Therefore, this approach in essence reuses all counterexamples found
during the learning of the previous model.

Windmüller et al. also describe why the separating sequences discovered while
learning the previous model can be reused to learn the new model. The separating
sequences are used by a learner to distinguish between states. A learner will
initially start with a minimal set of separating sequences and add sequences



Adaptive Learning for Learn-Based Regression Testing 167

to this set if it discovers it can otherwise not distinguish between two states.
If a new learner reuses these separating sequences, it will directly be capable
of distinguishing between states. Even if the system has been changed and a
sequence no longer helps to distinguish two states, the new observations will
show this and a correct model will be constructed.

In our experiments we used the second approach, as we believed it to be a
good fit for regression testing. It is easy to store the observation table of each
learner and initialize the new learner with this information.

2.3 The Role of Separating Sequences

In order to understand how much adaptive learning can help to reduce the
interaction needed to learn a model, it is important to better understand the
role of separating sequences when learning a model. In this section we give more
insight into separating sequences.

The role of separating sequences is to steer the observations the learner makes
when learning a model. Initially a learning algorithm does not know what obser-
vations to make. It is only given a set of actions it can perform.

Learning algorithms such as R&S will therefore try to develop a minimal
viable hypothesis. They will perform a minimal amount of interaction such as
performing each action once. If the observations are consistent with each other,
it will immediately produce a model hypothesis, otherwise it will keep adding
observations until they are consistent. If it cannot distinguish possible states
from one another with the observed outputs, the learner will merge these states.

The learner will then ask the teacher for a counterexample. When the learner
receives a counterexample, the learner can learn what sequence of actions dis-
tinguishes two states from one another. It will add this sequence to the set of
separating sequences and perform this sequence in all possible discovered states
to determine if it can distinguish two states from one another.

With each separating sequence, the learner learns what observations it should
make in order to identify more unique states. And the more states it discovers,
the more accurate the model becomes.

Therefore, the set of separating sequences tells the learning algorithm what
sequences it should try in the possible states it has discovered to determine if
the states can be distinguished from one another.

2.4 Example

In this section we attempt to illustrate the background information through an
example of learning a model. In this example we learn a simple system with just
two inputs: a and b. The system is shown in Fig. 1. Performing action a and
receiving output z is denoted as a/z.

We use the R&S learner and RandomWord teacher in this example.



168 D. Huistra et al.

s0start s1 s2 s3
a/z

b/z

a/z

b/y

a/x

b/y

a/x, b/y

Fig. 1. Model of the system learned in the example

s0start a/z, b/z

Fig. 2. Model hypothesis 1

s0start s1
a/z

b/z

a/z, b/y

Fig. 3. Model hypothesis 2

Iteration 0. Input: The user has to specify a system and alphabet of the system
that should be learned.

Step 1: The first step of the learner is to process the input alphabet. In our
example a and b. Based on this the learner initializes access sequences
← [a,b] and separating sequences ← [].

Step 2: Then the learner starts filling the observation table with each combina-
tion of a access sequence and a separating sequence element. In the first
iteration it makes only two observations: a/z & b/z.

Step 3: Given these observations the learner constructs the model hypothesis
shown in Fig. 2. Based on these observations alone, it can only identify
one unique state.

Iteration 1. Input: The model hypothesis of iteration 0 is processed by a teacher
that attempts to find a counterexample. In our example the teacher finds the
following counterexample sequence: a/z,b/y.

Step 1: The learner starts with processing the given counterexample. From this
counterexample it determines that it should make more observations.
It adds action b to the set of separating sequences, as performing b
separates two possible states from one another.

Step 2: The learner will than fills the observation table with all combinations
of access sequence and separating sequence elements. It identifies that
the sequence of action a transitions the system into a unique state. It
than adds the sequences a,a and a,b as possible access sequences of new
states.

Step 3: The filled observation table produces the hypothesis shown in Fig. 3.



Adaptive Learning for Learn-Based Regression Testing 169

Iteration 2. Input: The teacher will find another counterexample in the model
hypothesis. This time a/z,a/z,a/x.

Step 1: The learner will process this counterexample and identify that
the sequence a,a can be used to identify inconsistent behavior.
Therefore a,a will be added to the set of separating sequences.

Steps 2 and 3: We skip the details, but the observation table is extended, new
states are identified and new access sequences are added. The
resulting hypothesis matches the model shown in Fig. 1.

Output: This time the teacher does not find a counterexample. Therefore
the learner will return the model hypothesis as the final hypoth-
esis to the user.

Adaptive Learning. Now we learn the same system once again, but this time
we use adaptive learning.

Input: This time the input is the alphabet of the system and a set of separating
sequences from the previous learner: alphabet ← [a,b] and old separating
sequences ← [b,(a,a)].

Step 1: Once again the learner will use the alphabet to initialize the access
sequence. But this time the learner will set the separating sequences to
the old separating sequences.

Step 2: When the learner starts filling the observation table, it needs to makes
a lot more observations. Using these observations however it can iter-
atively identify new unique states and add the corresponding access
sequences while filling the observation table. While filling the observa-
tion table it identifies all possible states in the same iteration.

Step 3: The constructed model hypothesis in the first iteration is equivalent to
the system shown in Fig. 1.

3 Experiments

As stated previously, the main practical bottleneck for using learn-based testing
is the learning time of a model. Our goal is to determine how much adaptive
learning can help to reduce the amount of interaction required to learn a model.
In other words, when learning the model of a system, is it more efficient to adapt
a (similar) model or to learn a model from scratch?

There is no definitive answer to this question. It depends on the situation. For
example, how similar the model to adapt is to the system that is being learnt.

We are however specifically interested to determine the benefit of adaptive
learning in the context of regression testing. Here we assume that iterative ver-
sions of a system will all need to be learnt to be checked for regressions. This
means that for each version of the system that needs to be learnt, the model of
a relatively similar previous version was already learnt and that model can be
adapted. The result is that models to adapt from are often very similar to the
model that is being learnt, which is an optimal scenario for adaptive learning.



170 D. Huistra et al.

To determine the benefit of adaptive learning in a regression testing context
in practice, we set up two experiments to compare the performance of adaptive
learning to regular learning. In the experiment we learn multiple versions of a
system through both adaptive and regular learning and compare the interaction
required to learn those versions.

In this section we discuss the setup, procedure and results of this experiment.

3.1 The Setup

In this section we discuss how the experiment was setup to produce a good
estimation of the benefit of adaptive learning in a general regression setting
context.

Chosen systems. The specific systems that are learnt have a large impact on the
interaction required to learn its model. Therefore experiments were performed
on two different systems. We chose systems already learnt in related work to
build upon those efforts and show the benefit of adaptive learning. In addition,
the learnt models of these systems are publicly available. This allowed us to
perform the experiments on a simulated version of the real system. We created
a simulator that simulates a system’s behavior based on a given model. This
simulator made it much faster to perform experiments compared to working
with a real system.

The chosen systems are as follows:

– ToDoMVC: ToDoMVC1 is a project that contains a large number of imple-
mentations of a standardized set of functionalities but implemented using
different frameworks/libraries. The main goal is to compare these frame-
works/libraries with one another. Bainczyk and Schieweck [12] have learnt
the model of a large number of the implementations and shown that they do
not all produce the same functionality.

– SSH: Models of SSH implementations were previously learnt by Fiterău-
Broştean et al. [13] in order to verify these systems using a list of system
properties. These system properties were also available and provides a nice
template that can be used for model checking different versions after their
model is learnt, and gives a good indication as to what type of changes
between versions should be detected. We focused our experiments on the
DropBear2 implementation.

Learning parameters. To account for and determine the influence of learning
parameters on the benefit of adaptive learning, the experiments were performed
with different combination of learning parameters. L* and R&S were used as the
learning algorithms, as these are the two main observation table based learn-
ers and our adaptive learning approach is developed for those. For the teacher
algorithms WMethod and RandomWord were used. See the background section
1 http://todomvc.com/.
2 https://matt.ucc.asn.au/dropbear/dropbear.html.

http://todomvc.com/
https://matt.ucc.asn.au/dropbear/dropbear.html


Adaptive Learning for Learn-Based Regression Testing 171

for more information. While there are many variations of these learners and
teachers, we found that these four were a good representation of the different
behaviour we saw during experimentation.

Multiple versions. The difference between two versions of a system can vary. A
new version can be a code-refactoring were only the underlying code is changed
but the functionality remains the same, or a new version can change a large part
of the functionality. When the difference between two versions varies, the benefit
of adaptive learning also varies.

In order to take this into account, as well as to determine how much the differ-
ence between two versions influences the benefit of adaptive learning, the exper-
iment is based on learning multiple versions of a system with varying degrees of
difference to one another. The details are discussed in the next sections.

Measurements. The experiments focus only on the interaction required to learn a
model in different situations. The models are not actually checked for regressions,
as this is not relevant for measuring the benefit of adaptive learning.

The interaction required to learn a model is measured by the number of
queries that have to be processed by the system. We measure both the learning
and equivalence queries.

We do not count the queries used to test the final hypothesis for counterex-
amples. This is a fixed number for each learning experiment and is not rele-
vant when comparing the two approaches. In addition, this number depends on
user settings and a hypothesis can already be checked for regressions while the
hypothesis is still searched for counterexamples.

3.2 Learning ToDoMVC

In the ToDoMVC experiment we wanted to determine the benefit of adaptive
learning in the optimal situation. In the optimal situation, adaptive learning is
used to learn a model that is unchanged from the previously learnt model. In this
experiment we therefore learn the same system twice, once with regular learning
and once with adaptive learning.

We also look at the influence of the different learner and teacher algorithms.
We look at the benefit of adaptive learning for all combinations of the L*

Table 1. Queries needed to learn ToDoMVC with different learning parameters

Parameters Regular learning Adaptive learning

Learner Teacher Learner Teacher

L* + WMethod 2,534 1,944 1,634 0

L* + RandomWord 19,215 3 1,743 0

R& S + WMethod 549 2,037 544 0

R& S + RandomWord 337 2 326 0



172 D. Huistra et al.

and R&S learner and the WMethod and RandomWord teacher algorithms. The
results of the experiment can be found in Table 1. We discuss these results in
Sect. 3.4

3.3 Learning SSH

For the SSH experiment we manually created several versions of the SSH program
with varying degrees of differences between those versions. The experiment is
based on learning these different versions of the program by adapting a model
of the base system and comparing this to learning from start.

We performed the experiments with the L* and R&S learning algorithms and
the WMethod equivalence oracle. The RandomWord oracle was not able to find
the required counterexamples within 10 million attempts.

In the following we discuss the versions of the program we created and how
we performed the experiment on that version.

Base System. The base system is the system learnt by Fiterău-Broştean
et al. [13]. This system is used to learn the initial model without adaptive learn-
ing.

Version 1: The first version of SSH that was created is functionally equivalent
to the base system. This is for example the case when non-functional changes
have been introduced, such as code refactoring or styling adjustments. Even with
such changes a system should be tested for regressions, to make sure that the
functionality did not change. This is an optimal situation for adaptive learning,
as the model will not need to be adapted at all. The model only needs to be
verified as correct.

Version 2: The second version of SSH is a system that introduces a regres-
sion into the system. We created a version that contains a property violation
according to the LTL formulae specified by BroStein et al.

Version 3: The third version of SSH is a system that introduces a special type
of new functionality to the system. Here an action needs to be performed twice in
order to proceed with a key-reset, which should require an additional separating
sequence to identify the new state.

The results of this experiment can be seen in Table 2.

3.4 Discussion

In the ToDoMVC experiment we see that there is a benefit to using adap-
tive learning with all combinations of learning parameters. However, the benefit
reduces when the required teacher queries using traditional learning is reduced.
We can summarize the findings as following:

1. When using RandomWord, the effort required to find all separating sequences
for ToDoMVC is very small. Therefore little effort can be saved by using
adaptive learning.



Adaptive Learning for Learn-Based Regression Testing 173

2. RandomWord produces very long counterexamples. This results in L* cre-
ating a large observation table. L* benefits from the shorter counterexam-
ples produced by WMethod, while R&S is better capable of processing large
counterexamples.

Table 2. Queries needed to learn SSH with different learning parameters

System Parameters Regular learning Adaptive learning

Learner Teacher Learner Teacher

Version 1 L* 15,311 605,534 9,071 0

R&S 5,310 618,868 5,291 0

Version 2 L* 15,623 503,978 9,071 0

R&S 5,309 566,240 5,291 0

Version 3 L* 15,911 604,617 10,749 42,356

R&S 6,081 1,290,732 6,061 42,356

When learning the first version of SSH with regular learning, we saw that L*
and R&S performed similar. Both require around 620.000 queries to learn the
base system, although R&S required significantly less learning queries. In both
cases adapting a model requires significantly less queries than learning a model
from scratch.

L* however requires almost twice as much learning queries as R&S. We
believe this comes from the fact that the L* learner produces more distinguishing
suffixes and thus larger observation tables. Simply filling the observation table
of an L* learner requires significantly more queries.

For the learning of version 2 we see the same results as for learning version
1. This indicates that even though a bug has been introduced in version 2, this
version of the system can be learnt with the same distinguishing suffixes as the
base system. Therefore the learner only needs to fill the observation table to
learn the model of this version.

When learning version 3 we see that the learner needs to find additional
separating sequences. The effort required to identify the additional sequences is
however significantly smaller than finding all of them.

4 A Theory of Reuse

As discussed in Sect. 2, a learning algorithm needs a set of separating sequences
to determine what observations it should make to identify and distinguish the
states of a system. By reusing an existing set of separating sequences discovered
while learning a similar model, adaptive learning aims to reduce the interaction
needed to discover the set of separating sequences.

The goal of this research effort is to determine how much interaction can be
avoided by using adaptive learning. To this end we performed an experiment to



174 D. Huistra et al.

compare adaptive learning to regular learning. We however also identified three
main factors that determine the benefit of adaptive learning. In this section we
discuss those factors.

4.1 Discovery

The main factor that determines the benefit of adaptive learning is the amount
of interaction required to discover a set of separating sequences in the model.
The difficulty of discovering a set of separating sequences depends mainly on the
behaviour of a system that is being learned and partially on the method used to
discover separating sequences.

We can see this when looking at the differences between the experiments on
ToDoMVC and SSH. SSH requires a lot more interaction to discover the set of
separating sequence, while ToDoMVC showed the difference the teacher algo-
rithm can have on the effort required to discover a set of separating sequences.

The effort that goes into the discovery of a set of separating sequences is a
combination of the following two aspects:

1. The number of suffixes that need to be discovered
2. The effort to discover a suffix

The number of suffixes required. A separating suffix is used to distinguish two
states from one another. The number of separating sequences required is there-
fore at most the number of pairs of states that need to be distinguished between,
but often pairs can reuse the same suffix. The number of separating sequences
is therefore related to the specific behaviour in a system.

Discovering a suffix. The discovery of suffixes is performed by a teacher algo-
rithm. Given a hypothesis, the teacher will attempt to find two states that should
be distinguished from each other. It does this by finding a sequence of actions
that shows these states have a different behavior/output, i.e. a counterexample.

The teacher algorithm tries to find such a sequences by simply trying (ran-
dom) sequences of actions on the system. The number of sequences that can be
tried and the percentage of sequences that result in a counterexample however
depend on the system.

The number of possible sequences of a certain length is simply the number
of actions to the power of the length of the sequence. Therefore the number
of possible actions significantly increases the average effort required to find a
counterexample. The required length of counterexamples and the percentage of
sequences that produce a counterexample depend on the behaviour of the system.

For example, a system that resets to the initial state when a wrong action is
performed requires a precise set of sequence of actions to reach certain states,
thus the percentage of sequences that are a counterexample is reduced. In the
experiments we saw for example that SSH resets back to the initial state when
a wrong actions is performed, therefore it required very specific sequences of
actions to reach certain states. This is also the reason why RandomWord did
not perform well for SSH.



Adaptive Learning for Learn-Based Regression Testing 175

4.2 Reuse

Depending on the change between two versions of a system, the number of
distinguishing suffixes that can be reused and the number of new suffixes that
need to be discovered varies on how much the behaviour of the system changed.

Generally, the more the states of a system have been altered, the number of
suffixes that can be reused is reduced.

However, we believe that generally the difference in behaviour between two
versions of a system is minor. Therefore in most situations there should be a
high number of distinguishing suffixes that can be reused.

When creating versions of SSH we noticed that many small changes did not
require the discovery of additional separating sequences and we had to purpose-
fully make changes that would trigger this need.

4.3 Quality

The third factor that influences the benefit of adaptive learning is the quality of
the set of separating sequences. The separating sequences guide the learner in
what observations it should make. With a bad quality of separating sequences
however, the learner can make a large number of observations that does not
assist in identifying new states.

Generally a learner will attempt to find a sufficient set of separating
sequences, but in most cases it will not find a minimal set of separating sequences.

An example of this is the L* learner. This learner will add a large number
of sequences to the set op separating sequences. Not all of these sequences are
required. Therefore, this learner will generally make more observations than
required.

This can be seen in the ToDoMVC experiment. With adaptive learning, the
L* learner required almost twice as much queries compared to the R&S learner.
The reason for this is the large set of separating sequences that L* creates.

5 Discussion and Future Work

Our experiments confirm that adaptive learning improves the LBT approach for
regression testing: the number of queries needed to learn the adapted system is
significantly lower than the number of queries needed to learn a system from
scratch.

We also explained the factors that influence this gain. The reusability of the
learnt distinguishing suffixes depends on the complexity of the base system, the
difference with the updated system, and the quality of the set of suffixes.

These observations lead to two potential improvements that can be studied
in future work:

– Discrimination Tree based learners: The approach for adaptive learning
used in our work is based on observation tree-based learners such as L* and
R&S. More recent learners are based on a discrimination tree and have shown



176 D. Huistra et al.

to be more efficient in the learning queries they require to create a hypothesis.
Therefore, we believe that an adaptive learning approach should be developed
for discrimination tree-based learners.

– Calculate the optimal set of separating sequences: The quality of the
set of separating sequences identified while learning a model can vary. Instead
of using a set that is discovered during the learning of a model we can also
calculate a set of separating sequences on a given model. An approach to do
this was proposed by Smetsers et al. [14]. This operation can be performed in
between learning two models. It should provide a better-quality set and also
remove sequences if they are no longer required.

6 Conclusion

In the experiments we have seen that adaptive learning can reduce the interaction
required to learn the model compared to regular learning. This is especially the
case when changes between models are small, such as a regression testing context.

The benefits of adaptive learning can vary a great deal however. We have
identified three main factors that influence the benefit of adaptive learning. The
first two of these are the specific behavior of the system that is being learned and
the amount of change between two versions of a system. These two factors can
be used to determine if adaptive learning should be applied when learn-based
regression testing a specific system. If the system needs a lot of difficult to find
separating sequences and the changes between versions are small, then adaptive
learning can provide a large benefit.

The third factor is the quality of the separating sequences and how they are
used. We have seen that the learning parameters have a large impact on this.
They determine what separating sequences are identified and how they are used
to make observations. We have also discussed two ways in which the quality of
the separating sequences can be improved.

References

1. Zelkowitz, M.V.: Perspectives in software engineering. ACM Comput. Surv. 10(2),
197–216 (1978)

2. Wong, W.E., Horgan, J.R., et al.: A study of effective regression testing in practice.
In: ISSRE, Albuquerque, NM, USA, 2–5 November, pp. 264–274 (1997)

3. Olan, M.: Unit testing: test early, test often. J. Comput. Sci. Coll. 19(2), 319–328
(2003)

4. Meinke, K.: Automated black-box testing of functional correctness using function
approximation. In: ISSTA, Boston, MA, USA, 11–14 July, pp. 143–153 (2004)

5. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

6. Groce, A., Peled, D.A., Yannakakis, M.: Adaptive model checking. Logic J. IGPL
14(5), 729–744 (2006)

https://doi.org/10.1007/978-3-662-46681-0_61


Adaptive Learning for Learn-Based Regression Testing 177

7. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from
a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS,
vol. 6659, pp. 256–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-21455-4 8

8. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

9. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
In: Hanson, S.J., Remmele, W., Rivest, R.L. (eds.) Machine Learning: From Theory
to Applications. LNCS, vol. 661, pp. 51–73. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-56483-7 22

10. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng. 4(3), 178–187 (1978)

11. Windmüller, S., Neubauer, J., et al.: Active continuous quality control. In: CBSE,
Vancouver, BC, Canada, 17–21 June 2013, pp. 111–120 (2013)

12. Bainczyk, A., Schieweck, A., Steffen, B., Howar, F.: Model-based testing without
models: the TodoMVC case study. In: Katoen, J.-P., Langerak, R., Rensink, A.
(eds.) ModelEd, TestEd, TrustEd. LNCS, vol. 10500, pp. 125–144. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68270-9 7

13. Fiterau-Brostean, P., et al.: Model learning and model checking of SSH imple-
mentations. In: SPIN, Santa Barbara, CA, USA, 10–14 July 2017, pp. 142–151
(2017)

14. Smetsers, R., Moerman, J., Jansen, D.N.: Minimal separating sequences for all
pairs of states. In: Dediu, A.-H., Janoušek, J., Mart́ın-Vide, C., Truthe, B. (eds.)
LATA 2016. LNCS, vol. 9618, pp. 181–193. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-30000-9 14

https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/3-540-56483-7_22
https://doi.org/10.1007/3-540-56483-7_22
https://doi.org/10.1007/978-3-319-68270-9_7
https://doi.org/10.1007/978-3-319-30000-9_14
https://doi.org/10.1007/978-3-319-30000-9_14

	Adaptive Learning for Learn-Based Regression Testing
	1 Introduction
	2 Background
	2.1 Active Automata Learning
	2.2 Adaptive Learning
	2.3 The Role of Separating Sequences
	2.4 Example

	3 Experiments
	3.1 The Setup
	3.2 Learning ToDoMVC
	3.3 Learning SSH
	3.4 Discussion

	4 A Theory of Reuse
	4.1 Discovery
	4.2 Reuse
	4.3 Quality

	5 Discussion and Future Work
	6 Conclusion
	References




