

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 26, 2024

Safety Interlocking as a Distributed Mutual Exclusion Problem

Fantechi, Alessandro; Haxthausen, Anne Elisabeth

Published in:
Formal Methods for Industrial Critical Systems

Link to article, DOI:
10.1007/978-3-030-00244-2_4

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Fantechi, A., & Haxthausen, A. E. (2018). Safety Interlocking as a Distributed Mutual Exclusion Problem. In
Formal Methods for Industrial Critical Systems (pp. 52-66). Springer. https://doi.org/10.1007/978-3-030-00244-
2_4

https://doi.org/10.1007/978-3-030-00244-2_4
https://orbit.dtu.dk/en/publications/d5f13f0c-8b4e-4b0e-9c45-b3f76ffe79cb
https://doi.org/10.1007/978-3-030-00244-2_4
https://doi.org/10.1007/978-3-030-00244-2_4

Safety Interlocking as a Distributed Mutual
Exclusion Problem

Alessandro Fantechi1 and Anne E. Haxthausen2

1 DINFO, University of Florence, Firenze, Italy
alessandro.fantechi@unifi.it

2 DTU Compute, Technical University of Denmark, Lyngby, Denmark
aeha@dtu.dk

Abstract. In several large scale systems (e.g. robotic plants or trans-
portation systems) safety is guaranteed by granting to some process or
physical object an exclusive access to a particular set of physical areas
or objects before starting its own action: some mechanism should in this
case interlock the action of the former with the availability of the latter.
A typical example is the railway interlocking problem, in which a train is
granted the authorisation to move only if the tracks in front of the train
are free. Although centralised control solutions have been implemented
since decades, the current quest for autonomy and the possibility of dis-
tributing computational elements without wired connection for commu-
nication or energy supply has raised the interest in distributed solutions,
that have to take into account the physical topology of the controlled ar-
eas and guarantee the same level of safety. In this paper the interlocking
problem is formalised as a particular class of distributed mutual exclu-
sion problems, addressing simultaneous locking of a pool of distributed
objects, focusing on the formalisation and verification of the required
safety properties. A family of distributed algorithms solving this problem
is envisioned, with variants related to where the data defining the pool’s
topology reside, and to how such data rules the communication between
nodes. The different variants are exemplified with references to different
distributed railway interlocking algorithms proposed in the literature. A
final discussion is devoted to the steps needed to convert the proposed
definitions into a generic plug-and-play safety-certified solution.

1 Introduction

The current quest for autonomy of cyber-physical systems and the possibility of
distributing computational elements without wired connection for communica-
tion or energy supply has raised the interest in distributed software solutions in
which several computational elements cooperate to guarantee global properties.
In the case of safety-critical systems, mastering the complexity of distributed
solutions so to guarantee that safety is maintained is a hard task.

In this paper we address a particular class of safety-critical cyber-physical
systems, showing how a systematic adoption of known distributed algorithms
and of formal specifications can help to master the complexity.

In several large scale systems (e.g. robotic plants or transportation systems)
safety is guaranteed by granting to some process or physical object an exclusive
access to a particular set of physical areas or objects before starting its own
action: some mechanism should in this case interlock the action of the former
with the availability of the latter. A typical example is the railway interlocking
problem, in which a train is granted the authorisation to move only if the track
segments in front of the train are free.

The problem resembles a classical mutual exclusion problem: there are several
active, or moving, physical objects (called from now on processes), that compete
for the exclusive access for one or more free areas, which are actually shared
resources.

Centralised solutions for this problem maintain the state of all shared re-
sources, receive access requests and grant the exclusive access to the requesting
process only if all the requested resources are free. Each resource can therefore
have state = {available, requested by Pi, accessed by Pi} .

Notice that, since we are actually dealing with physical systems, the state of
the resource has to reflect the actual state of a physical object: this may require
that the accessed state is actually split in a state in which the resource is locked
(meaning that the request by Pi has been met), and one in which the resource
is physically visited by the process (see Fig. 1). Furthermore, the requested state
may include not only a check that the related physical object is free, but also a
command to the object to physically prepare it to be available to be visited, and
a check that it is actually prepared, and this may take quite a long time. The
subsequent states as well require some interaction with the physical object. Since
a resource may be engaged in the requested state for long, concurrent requests by
other processes should be served in the meanwhile. Atomicity of the treatment
of a request is therefore guaranteed by denying requests of an already requested
resource by other processes.

Fig. 1. States of a shared resource (node)

To guarantee safety of an interlocking system built according to this principle
it is enough to prove that in any case two different processes cannot visit simulta-
neously the same resource, that is, any resource is exclusively locked by a single
process. Putting this in temporal logic (CTL), it is sufficient to verify for each re-
source, and for each i 6= j the formula AG ∼ (R visited by Pi∧R visited by Pj).

Not a big task for a model checker, if the principles above are expressed in a single
finite-state model that takes into account the actual topology of the controlled
areas. However, the experience with railway interlocking systems says that when
several trains (processes) may require tens of track circuits and points, out of a
pool of some hundreds, the combinatorial combination of the possibilities pro-
duces a state space explosion problem. This problem asks for suitable abstraction
or compositional techniques, and for the power of recently available SAT and
SMT-solvers to verify safety of the largest systems of realistic size [28, 9].

In this paper we suggest how a distributed formalisation of the interlocking
problem can decompose this verification problem into manageable verification
steps: the problem is formalised as a particular class of distributed mutual ex-
clusion problems (Sections 2,3,4), addressing simultaneous locking of a pool of
distributed objects, focusing on the formalisation and verification of the required
safety properties. A family of distributed algorithms solving this problem is en-
visioned, with variants related to where the data defining the pool’s topology
reside, and to how such data rules the communication between nodes (Sect.
5). The different variants are exemplified with reference to different distributed
railway interlocking algorithms proposed in the literature (Sect. 6). A final dis-
cussion is devoted to the steps needed to convert the proposed definitions in a
generic plug-and-play safety-certified solution (Sect. 7).

2 Distributed Mutual Exclusion

In general, the Distributed Mutual Exclusion problem is typically characterised
by the following statements:

– Concurrent access of processes to a shared resource or data is executed in
mutually exclusive manner.

– Only one process is allowed to execute the critical section, that is, to access
the shared resources, at any given time.

– In a distributed system there are no shared variables that can be used to
implement mutual exclusion and semaphores.

– Message passing is the only means for exchanging information.

Either centralised or distributed Mutual Exclusion algorithms have typically
to satisfy the following properties:

1. Safety: At any instant, only one process can execute the critical section.
2. Liveness: (absence of deadlock and starvation). Two or more processes

should not endlessly wait for messages which will never arrive.
3. Fairness: Each process gets a fair chance to execute the critical section.

Fairness generally means that the critical section execution requests are ex-
ecuted in the order of their arrival in the system.

Several Distributed Mutual Exclusion algorithms have been defined, espe-
cially in relation to distributed transactions, among which the most cited ones

are Lamport’s Algorithm [19], Ricart-Agrawala Algorithm [24], Maekawa’s Al-
gorithm [21].

Such algorithms actually guarantee safety, that is Mutual Exclusion, as obvi-
ously expected, and guarantee fairness and deadlock freedom at different degrees,
with different performance parameters (number of messages, latency, through-
put, response time).

3 The class of Distributed Mutual Exclusion problems of
our interest.

In the case studied in this paper, we are interested in a Distributed Mutual
Exclusion algorithm that primarily guarantees safety. Liveness and fairness are
actually not a concern, since the focus is on guaranteeing that safety is not
violated by multiple requests. If any process gets a request denial, it can just
replay the request later: it is somehow assumed that this delay does not cause
any major availability problem, because the normal interval between requests is
largely greater than the time taken to accept or deny a request. If this assumption
does not hold and hence availability becomes a problem, liveness and fairness
should be then taken into consideration. This issue may impact on the definition
of criteria to choose among different mutual exclusion algorithm variants (see
Sect. 5), but we will not discuss it in details, leaving it to future work: the idea
is that we concentrate on safety first, and then we will study availability and
performability of the envisaged solutions.

We can recast the above problem as simultaneous locking of a pool of dis-
tributed nodes, in the following way:

– In this distributed setting, a physical resource is controlled by a dedicated
computer, which is a node of a network. Hence, we will speak of nodes, rather
than resources, from now on.

– A set of distributed nodes is visited by some computation processes (set of
nodes N , set of processes P).

– In order to avoid conflicts between the computations of the processes, a
process can request to exclusively lock a pool of nodes for an exclusive visit
(pool of nodes S ⊆ N). We assume a predetermined set of possible pools
FS ⊆ 2N , ∅ 6∈ FS , without loss of generality, since FS can also be 2N ; a
process request refers to a pool S ∈ FS .

– In order to lock a pool of nodes, all nodes should be in (or should be brought
to) a state in which they are available to be locked.

– If some node of the pool is not available, the lock request is denied.
– Otherwise, if all nodes are available, the lock is granted, and the process can

start the visit of the pool.
– The lock on a node is singularly released after the process has declared to

have finished visiting that node3.

3 This feature allows for partial release of the pool of nodes, at the advantage of other
processes that want to request those nodes, so increasing availability.

Fig. 1 gives an abstract view of the states of a shared resource, that is, of
a node; note that there may also be concrete transient states induced by the
locking algorithm, such as ”requested but not available”.

This Distributed Mutual Exclusion problem is actually a simplified case of
the general one presented in Sect. 2. Indeed, it can be reduced to a Distributed
Transaction problem (Distributed Atomic Action): in this problem, a set of nodes
performs a distributed action, and the decision whether the action is committed
has to be agreed among all the participants: if they do not agree, the action is
aborted and the participants roll back to their previous state, so that either the
distributed action has been fully performed, or it has not at all. In our case, the
distributed action is the reservation of the requested pool of nodes.

4 2PC protocol for Distributed Mutual Exclusion

Algorithms to solve the Distributed Transaction problem have been defined since
long time; the most popular one is the Two Phase Commit protocol (2PC) [13,
20].

4.1 Classical 2PC protocol

As the name says, the protocol works in two phases, according to the following
steps for locking a pool of nodes S:

– Commit request phase (or Prepare phase)
• The coordinator (a specially selected node in S) sends a query to commit

message to all participants (all other nodes in S) and waits until it has
received a reply from all participants.

• Each participant replies with an agreement message or an abort message
(an abort message may be due to the explicit denial to commit or the
expiration of a timeout on the execution of an action or on a communi-
cation).

– Commit phase - Success
• If the coordinator received an agreement message from all participants

during the commit-request phase:
∗ The coordinator sends a commit message to all the participants.
∗ Each participant sends an acknowledgement to the coordinator.

– Commit phase - Failure
• If any participant sends an abort during the commit-request phase (or

the coordinator’s timeout expires):
∗ The coordinator sends a rollback message to all the participants.
∗ Each participant rolls back and sends an acknowledgement to the

coordinator.

This algorithm requires 4M messages, with M + 1 nodes in S, and assumes
that point to point communication is available, although broadcast communi-
cation from the coordinator can reduce the overall number of messages. The
algorithm is fail-safe w.r.t. communication failures, in the sense that commit
cannot be wrongly reached if communication fails somewhere.

4.2 Linear 2PC protocol for Distributed Mutual Exclusion

In this variant, participants are linearly ordered and each participant commu-
nicates with the previous and with the next participant. In the first phase, the
coordinator makes the request to the first element of the pool, and each partic-
ipant propagates the request to the next node in the list. In the second phase,
the last participant replies OK if it is ready to commit, and the OK message is
propagated backwards to the other participants; on its reception the first node
delivers the OK message to the requesting process. If any of the nodes decides to
abort, it propagates the abort messages in both directions. This algorithm needs
- in the success case - only 2M point to point messages, and is hence favoured
by a linear topology of the communication network.

4.3 Formalisation of the Linear 2PC protocol

Already [26] presented a formal verification that 2PC was able to guarantee
commit only if all nodes had reached the commit point and no reason for aborting
the protocol was raised. This is what suffices for safety certification.

Fig. 2. The Linear 2PC protocol: behaviours of the participating nodes

In order to discuss how a compositional formal verification of safety can be
conducted, we show in Figure 2 a simplified formalisation of the nodes of the
Linear 2PC protocol, by means of UML Statecharts, representing respectively
the First node, any Intermediate node and the Last node of the linear sequence;
the Statecharts have been drawn by the UMC tool [5]. The charts show that
any Intermediate node goes in state Phase1 when it receives a request message
from the previous node, and propagates the message if the node is locally ready
to commit. In state Phase 2, it waits for the OK message from the next node in
order to reach the Commit state. The node rolls back to the initial state in case
of a local abort decision or an abort message from an adjacent node. The First
and Last nodes act similarly upon loosing the communication with the previous
or the next node, respectively. The input from the physical environment of the
node is abstracted by the incoming localcommit and localabort actions; the latter
abstract communication timeouts as well. Moreover, to keep them simple the
shown charts do not model the release feature, just exhibiting an unconditional
return to the initial state after the Commit state. UMC allows any number of
Intermediate objects to be instantiated, connected in a linear list by means of
the prev and next variables; UMC provides the capability to perform model
checking on the modelled network of nodes.

The safety property we are interested to prove can be expressed as: the First
node reaches the Commit state only if all the nodes have locally committed.
This can be directly proved on a model consisting of n+ 2 nodes (First, Last, n
Intermediate nodes), but when n is already in the order of ten, the state space
explosion problem makes the verification time too long to be practical.

We can however decompose this proof noting that it is actually enough to
prove that each node can reach its own Commit state only if the next one
has reached the Commit state. This amounts to discharge the following proof
obligations:

– locally prove, for each type of node, that reaching the Commit states is al-
ways preceded by the local commit and by (for the First and the Intermediate
nodes) the reception of the OK message from the next node;

– locally prove, for the Last and Intermediate nodes, that sending the OK
message to the previous node is always preceded by the local commit;

– prove that the communication means does not forge fake OK messages (a
received OK message has always been sent by the next node).

The first two items above can be easily proved locally for each node. Actually
the authors have proved them by model checking for the Statecharts shown in
Figure 2 by means of UMC: the property to be proved has been expressed as
a CTL universally quantified ”precedes” formula – e.g. the first property above
for the Last node is: not E [not (localcommit) U Commit]. The last item
above is actually a security assumption over the communication between nodes.

A similar principle can be used to prove safety of the release features when
included in the model, that is, to prove that reserved nodes cannot be released
before they have been visited.

While safety is easily assured by employing 2PC, proving liveness and fair-
ness would need to take into account several factors we do not address here,
such as synchronous or asynchronous of communication, communications faults,
ordering of messages, modelling of timeouts, distinguishing successive requests
to the same pool, etc.

5 Distributed Mutual Exclusion Variants

The topology of the pool of partners engaged in the 2PC protocol can change at
every new invocation of the protocol, since the requesting process may differ, and
it might request to lock a different pool of nodes. Different distributed mutual
exclusion algorithms can be envisioned, with variants related to the topology of
the pool, to where the data defining the pool’s topology reside, and how such data
rules the communication between nodes. For example, when applied to mutual
exclusion of a pool of nodes, the Linear 2PC protocol assumes the knowledge of
the linear sequence of nodes of the pool: in particular the formalisation of Linear
2PC provided above assumes that each node can send/receive messages to/from
the next and previous elements of the pool. But the list of nodes could also be
passed along with the request message from the requesting process.

We identify three main variants:

– Variant 1) The Classical 2PC algorithm is adopted: the requesting process
knows the set S of nodes in the pool and is able to broadcast the request
to all the nodes in the pool. The nodes are able to reply to the requesting
process.

– Variant 2A) The Linear 2PC algorithm is adopted: the pool of nodes S
has a linear structure, that is, is composed by a list of nodes. The commu-
nication between nodes follows the order of the list. The requesting process
knows the list S and sends its request with the list S to the first element
of S, each element takes the next and the previous element from the list S
and propagates the request, with the list S, according to 2PC: the OK mes-
sages are propagated backwards from the last node to the first, by using the
knowledge of the previous element for each node. In the case abort messages
are generated, they are propagated back and forth in a similar way.

– Variant 2B) The Linear 2PC algorithm is adopted, as in Variant 2A: the
pool of nodes S has a linear structure, and communication between nodes
follows the order of the list. Each node has the knowledge of the previous
and next elements for any pool S ∈ FS to which it is participating, that is,
it knows the adjacent nodes in the pool’s topology for each pool to which
it belongs. The requesting process sends its request with the requested pool
identifier S to the first element of S, and propagates the request, with the S
pool id, according to 2PC. Adjacency may be related to physical adjacency or
connection between the physical elements controlled by the nodes. Routing
mechanisms common to communication networking may be used in each
node to determine the next node to which propagate the request, and hence
this variant may include limited local rerouting features for availability.

Another source of variability is that actual interlocking algorithms for Cyber-
Physical Systems might require two rounds, each employing a 2PC protocol to
complete the procedure. In the first round the pool of nodes is locked. In the
second round commands are issued to physical objects associated to nodes to
move to the desired state, and the acknowledge messages include the check that
the physical nodes have actually reached the desired state. Only then the process
can start the visit. This behaviour can be needed, e.g., for energy efficiency,
because it avoids useless physical movements in case a reservation is aborted.

6 Distributed interlocking as Distributed Mutual
Exclusion

Railway interlocking systems are those systems that are responsible to grant to
a train the exclusive access to a route: a route is a sequence of track elements
that are exclusively assigned for the movement of a train through a station or a
network. Actually, railway interlocking systems are the most complex (in term
of topological size and structure) instances of the safety interlocking concept
defined above.

Granting to a train the exclusive access to a route typically means i) checking
that the route is free from other trains, by means of track circuits or other pres-
ence sensors, ii) commanding points in their correct position, iii) checking that
the points have actually reached the commanded position, and iv) setting the
signals so to give the driver the permission to move. The instantiation of these
generic rules on a station topology (made of the track layout and the set of
routes) is usually defined in a data structure named control table, that is specific
for the station where the system resides. The control table drives the subsequent
development of a centralised interlocking system. In the usual meaning of rail-
way interlocking, we intend therefore a system that simply receives requests of
reservations, and grants reservations or not on the ground of safety rules, until
the reservation has been fully used (the track is again free) or has been safely
revoked. It is not a burden of the interlocking to look for alternative routes in
case the requested one is busy, in order to optimise traffic throughput param-
eters, nor to guarantee that a train does not enter a not reserved track. These
two functions are traditionally in charge of separate systems, namely Automatic
Train Supervision (ATS) and Automatic Train Protection (ATP) respectively.

Centralised interlockings are complex and costly to design and especially
to be certified against safety guidelines. The complexity is due to the need of
verifying every possible conflicting combinations of different routes through the
station: adopting model checking to verify the interlocking logic of large stations
has indeed proved challenging [11, 28].

The distribution of the interlocking logic over a network of computing nodes,
according to the spirit of cyber-physical systems, has also the side effect of
partitioning the verification effort. According to what was said in Sect. 4, we can
think to split the safety certification into simpler and repetitive (hence factorised)
proofs that each node verifies the safety requirements, plus a security proof

for the employed 2PC protocol. The idea of distributed interlocking has been
proposed in several papers [2, 8, 15], where advantages and possible drawbacks
of such a solution are discussed: in practice, preference is still given to centralised
solutions, but this may change with the general trend to distribute intelligence.

In a distributed solution, track elements are directly controlled by a set of
distributed communicating nodes: each node controls a given layout element.
However, a route is still a global notion: a route has to be established by proper
cooperation between the distributed elements. The communication among nodes
follows the physical topology of the station/yard and a route is established by
the status of the elements that lie along the route.

The following correspondence can be established to consider a distributed
railway interlocking as an instance of the general distributed safety interlocking
concept:

– Track circuit, point → Node.
– Route → Pool of nodes.
– Trains → Processes.
– A route is requested by a train → A process sends a request for locking

a pool - including reserving track circuits and locking points in a specific
position.

– A route is reserved for a train→ Requested pool is locked - if track elements
are free and points are positioned.

– A train occupies a track circuit or a point → Visit of a node.
– A train leaves a track circuit or a point → Release of a node.

A specific characteristic of railway interlocking is that nodes of a route are
visited by the movement of the train along the route, hence are visited in a
sequential predetermined way. As soon as a track circuit or a point is left by
a train, it is available for possibly setting another route: this feature is called
sequential release, a common feature not needed for safety (a route could also
be collectively released when the visit of the last node has ended), but desired
to improve availability. Another specific characteristic is that cancellation of an
already reserved route may be asked (for example when a train is not able to
leave a station due to a mechanical problem). Safe cancellation can be achieved
in a similar way to safe reservation.

Some proposed distributed railway interlocking algorithms are discussed in
the following and use instances of the Distributed Mutual Exclusion variants
shown in Sect.5:

– Variant 1) [15, 12]. The engineering concept was originally developed by
INSY GmbH Berlin for their railway control system RELIS 2000 designed for
local railway networks. In this solution, the train has an onboard computer
with route information. Instead of signals, the computer gives Movement
Authorities to the driver. The train broadcasts the request of a route to
distributed switch boxes that control the track elements. This is actually a

special case of Variant 1, since it does not require the locking of the com-
plete route, before the train is allowed to move (sequential locking): it is as
if the train route is divided into sub-routes, each just containing one track
segment, and that the train then sequentially locks these small routes. The
protocol implicitly includes sequential release. In [15] the concept has been
formalised in the RAISE Specification Language, RSL [27], and the RAISE
theorem prover was used for verification. In [12] an extension of RSL, called
RSL-SAL [23] was used for the formalisation, and the formal verification was
performed using the SAL symbolic model checker.

– Variant 1) US patent 8820685 B2 [22]. A controller onboard the train first
identifies a group of resources permitting the vehicle to continue its mission,
by querying a local database (which contains the data of the whole railway
network) with the mission received from a regulating center. Although de-
tails of the communication protocol are not given, the onboard controller
broadcast the locking request to the identified group of resources, and gives
the consensus to move only when all the resources are locked in the desired
state. Sequential release is considered as well.

– Variant 1) US patent 20120323411 A1 [18]. The concept is not much different
from that of patent [22], with the added complexity that the reservation of
a route is negotiated first with other trains as well, and the state of the
wayside elements is also recorded at a central location as a back-up. Also in
this case, details of the protocol are not given, but in reference to our scheme,
the distributed protocol concerns the other processes as well, and the central
location can be considered as a further node. This patent also includes higher
level negotiation mechanisms on board trains to improve availability.

– Variant 2A) [10]. In this proposal, the linear 2PC is adopted. The information
about the route to be reserved (that is, the list of nodes) is propagated to
the nodes, from the first to the last node of the route: each node knows from
this list its adjacent nodes in the route, with which it directly communicates.
The concept has been modelled by UML Statecharts, using UMC for formal
verification of safety properties.

– Variant 2B) [7]. Again, this proposal adopts linear 2PC. Each node is ini-
tialised with a table containing, for each route traversing the node, the ad-
jacent elements with which it has to communicate. Only the route identifier
is propagated along the locking request. The concept has been modelled by
UML Statecharts, using UMC for formal verification of safety properties.

– Variant 2B) [4]. This paper formalises in SPIN an interlocking system, con-
sidered at the level of sections between stations of a metro line: the proposed
interlocking model is shown, by model checking, to guarantee that two trains
cannot enter the same section. Due to the linear topology of the line, the
model is a direct instance of Variant 2B, and does not include the aborting
possibility.

A few other attempts at distributing the interlocking logic in separate com-
putations have been developed, starting from the so-called geographic approach
[3, 6, 1], which encodes the interlocking logic in separate objects that each take

care of the control of a physical element (point, track circuit, signal, . . .) by
means of predefined composition rules, mimicking the topology of the specific
layout, although the obtained control software is still centralised. In particu-
lar, [2] proposes to start from a Statechart geographic model that uses shared
variables as a communication means between objects, and to allocate each ob-
ject on a distributed node. The adoption of standard distributed consistency
protocols guarantees that the exchange of information is the same of the full
centralised model. However, this approach requires the safety proof of the cen-
tralised model, with no attempt to decompose it into simpler proofs. Similarly,
in [16, 17] an overall Petri Net model of a distributed interlocking system is pro-
posed, by connecting Petri Nets representing the behaviour of each node. Again,
the analysis of the model does not employ any decomposition strategy.

Different criteria could be used in practice to choose among the variants;
these include for example:

– replicating the network database onboard all trains running in a network can
be practically done for a closed network, such as a metro network. Instead,
in an open infrastructure, such that envisioned by European interoperability
that foresee a train crossing many borders between national network, the
size of the database and frequency of its updates would be very high: since
these data are critical for safety, trains running with a previous release of
the database (maybe due to poor communication) would become dangerous.
It seems more reasonable that missions received by a train include a list of
identifiers of routes to be followed in each traversed station, to be asked to
a local, either distributed or centralised, interlocking system.

– on the other end, keeping route tables on the distributed trackside elements
requires robust distributed initialisation, configuration and reconfiguration
algorithms to maintain consistency [8].

– resilience to faults of single elements - in view of higher availability, which is
one of the advantages of distribution - may require redundancy, replication
of data and specific policies that could be favoured by one of the variants.

– another criterion pertains to energy efficiency and reliability of track ma-
chinery: if points are soon moved in an attempt to set a route that will fail
due to conflicting requests, this may result in a lower reliability and energy
waste.

The proposals according to Variant 1 show that moving the network map
onboard the train may favour the moving of route decision on board as well:
routes are currently predetermined in terms of a pool of elements, and allocated
to trains in a centralised way (e.g. by an Automatic Train Supervision (ATS)
system). Instead, routes could be dynamically generated in front of the train,
allowing for last minute choice according to optimisation strategies computed
on board. The push towards a train-centric vs. infrastructure-centric decision
making is one of the challenges considered in the Multiannual Programme of the
Shift2Rail Joint Undertaking Initiative [25].

7 Certification

The certification of safety of a distributed interlocking system, according to
what was discussed in Sect. 4, amounts to verify that each component locally
complies with the standard communication protocol, plus the verification that
the protocol does not forge messages. This makes the basis for a simpler and
less expensive certification process. First, the safety distributed protocol should
be formally verified once for all – this includes proper security measures against
attacks. Assembling off-the-shelf plug-in controller elements, manufactured by
different vendors, on top of this safety layer will automatically guarantee overall
safety, if they are certified to comply with the standard interlocking protocol.

As we have seen, the verification of the safe behaviour of a node can be
cheaply done by automated formal verification. One element that we have ig-
nored so far is that the proofs envisaged in Sect. 4 assume the local knowledge
of the previous and next element of the pool. The different variants have differ-
ent views on how these data are available to the nodes: routing tables may be
injected in the node at configuration (or reconfiguration) time, or routing infor-
mation may arrive together with the locking request. Assuring that the data is
always consistent with the physical track layout in each node becomes indeed the
major certification effort. The possible application of static analysis techniques,
such as those described in [14], is a promising research direction at this regard.

8 Conclusions

In this paper we have shown that safety interlocking can be seen as a particular
class of Distributed Mutual Exclusion problems and consequently distributed al-
gorithms solving this problem can be used for safety interlocking. We presented
variants of such distributed algorithms and exemplified them with references to
different distributed railway interlocking algorithms proposed in the literature.
Finally, we discussed the steps needed to convert the proposed solutions into
generic plug-and-play safety-certified solutions. Regarding the possible applica-
tions in the railway field, we believe that the achieved gains in the certification
effort can significantly decrease costs in the production and deployment of inter-
locking systems, once a standard communication protocol is emerging: variants
presented in this paper aims to be a first step in this direction.

Distributed safety interlocking systems may find application in any domain
where safety depends on the guarantee that a set of objects is in a determined
state. To our knowledge, however, the only example found in the literature is
the one reported (with no details about the adopted algorithms) in [29], aimed
to guarantee a safe access to a large physics experiment installation.

We have on purpose focused only on safety, mostly ignoring availability: the
proposed protocols do not guarantee liveness and fairness under several con-
ditions, and an accurate analysis of different factors (timing, fault models,. . .)
affecting these attributes would be needed. In the case of railway interlocking,
low availability can severely impact service performability. Given that safety is

granted by principles like those put forward by this paper, distributed solutions
can be adopted in practice only if sufficient availability is demonstrated, possibly
employing quantitative analysis techniques, as suggested in [8].

References

1. FP7 Project INESS - Deliverable D.1.5 report on translation of requirements from
text to UML. Tech. rep. (2009)

2. Banci, M., Fantechi, A., Gnesi, S.: The role of formal methods in developing a
distribuited railway interlocking system. In: Proceedings of Formal Methods for
Automation and Safety in Railway and Automotive Systems, FORMS/FORMAT,
Braunschweig, Germany. pp. 79–91 (2004)

3. Banci, M., Fantechi, A.: Geographical versus functional modelling by statecharts
of interlocking systems. Electr. Notes Theor. Comput. Sci. 133, 3–19 (2005).
https://doi.org/10.1016/j.entcs.2004.08.055

4. Basagiannis, S., Katsaros, P., Pombortsis, A.: Interlocking control by distributed
signal boxes: Design and verification with the SPIN model checker. In: Guo, M.,
Yang, L.T., Di Martino, B., Zima, H.P., Dongarra, J., Tang, F. (eds.) Parallel and
Distributed Processing and Applications, ISPA. LNCS, vol. 4330, pp. 317–328.
Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

5. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Sci. Comput.
Program. 76(2), 119–135 (2011). https://doi.org/10.1016/j.scico.2010.07.002

6. van Dijk, F., Fokkink, W., Kolk, G., van de Ven, P., van Vlijmen, B.: EURIS,
a specification method for distributed interlockings. In: Ehrenberger, W.D. (ed.)
Computer Safety, Reliability and Security. LNCS, vol. 1516, pp. 296–305. Springer
(1998). https://doi.org/10.1007/3-540-49646-7 23

7. Fantechi, A.: Distributing the challenge of model checking interlocking control ta-
bles. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Meth-
ods, Verification and Validation. Applications and Case Studies, ISOLA. LNCS,
vol. 7610, pp. 276–289. Springer (2012)

8. Fantechi, A., Gnesi, S., Haxthausen, A., van de Pol, J., Roveri, M., Treharne,
H.: SaRDIn - A safe reconfigurable distributed interlocking. In: Proc. 11th World
Congress on Railway Research, WCRR. Ferrovie dello Stato Italiane, Milano (2016)

9. Fantechi, A., Haxthausen, A.E., Macedo, H.D.: Compositional verification of in-
terlocking systems for large stations. In: Cimatti, A., Sirjani, M. (eds.) Interna-
tional Conference on Software Engineering and Formal Methods, SEFM. LNCS,
vol. 10469, pp. 236–252. Springer (2017). https://doi.org/10.1007/978-3-319-66197-
1 15

10. Fantechi, A., Haxthausen, A.E., Nielsen, M.B.R.: Model checking geographically
distributed interlocking systems using UMC. In: 25th Euromicro International
Conference on Parallel, Distributed and Network-based Processing, PDP. pp. 278–
286 (2017). https://doi.org/10.1109/PDP.2017.66

11. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking
control tables. In: Schnieder, E., Tarnai, G. (eds.) Proc. Formal Methods for Au-
tomation and Safety in Railway and Automotive Systems, FORMS/FORMAT. pp.
107–115. Springer (2010)

12. Geisler, S., Haxthausen, A.E.: Stepwise Development and Model Checking of a Dis-
tributed Interlocking System - using RAISE. In: Peleska, J., Roscoe, B., Havelund,

K. (eds.) International Symposium on Formal Methods, FM. LNCS, vol. 10951.
Springer (2018)

13. Gray, J.: Notes on data base operating systems. In: Operating Systems, An Ad-
vanced Course. LNCS, vol. 60, pp. 393–481. Springer-Verlag, London, UK (1978),
http://dl.acm.org/citation.cfm?id=647433.723863

14. Haxthausen, A.E., Østergaard, P.H.: On the use of static checking in the verifica-
tion of interlocking systems. In: Leveraging Applications of Formal Methods, Ver-
ification and Validation: Discussion, Dissemination, Applications, Part II. LNCS,
vol. 9953, pp. 266–278. Springer International Publishing AG (2016)

15. Haxthausen, A.E., Peleska, J.: Formal development and verification of a distributed
railway control system. IEEE Trans. Softw. Eng. 26(8), 687–701 (2000)

16. Hei, X., Takahashi, S., Nakamura, H.: Distributed interlocking system and
its safety verification. In: Proc. of 6th World Congress on Intelligent
Control and Automation. vol. 2, pp. 8612–8615. Dalian, China (2006).
https://doi.org/10.1109/WCICA.2006.1713661

17. Hei, X., Ma, W., Gao, J., Xie, G.: A concurrent scheduling model of distributed
train control system. In: Proc. IEEE Inter. Conf. on Service Operations, Logistics,
and Informatics, SOLI. pp. 478–483 (2011)

18. Kanner, F.W.A.: Control of automatic guided vehicles without wayside interlock-
ing, Patent US 20120323411 A1 (2012)

19. Lamport, L.: The implementation of reliable distributed multiprocess sys-
tems. Computer Networks 2, 95–114 (1978). https://doi.org/10.1016/0376-
5075(78)90045-4

20. Lampson, B., Sturgis, H.: Crash recovery in a distributed storage system. Tech.
rep., Comput. Sci. Lab., Xerox Parc, Palo Alto, CA (1976)

21. Maekawa, M.: A
√
N algorithm for mutual exclusion in decentral-

ized systems. ACM Trans. Comput. Syst. 3(2), 145–159 (May 1985).
https://doi.org/10.1145/214438.214445

22. Michaut, P.: Method for managing the circulation of vehicles on a railway network
and related system, Patent US 8820685 B2 (2014)

23. Perna, J.I., George, C.: Model Checking RAISE Applicative Specifications. In:
Proceedings of the Fifth IEEE International Conference on Software Engineering
and Formal Methods, SEFM. pp. 257–268. IEEE Computer Society Press (2007)

24. Ricart, G., Agrawala, A.K.: An optimal algorithm for mutual ex-
clusion in computer networks. Commun. ACM 24(1), 9–17 (1981).
https://doi.org/10.1145/358527.358537

25. Shift2Rail Joint Undertaking: Multi-annual action plan (November 2015),
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/jtis/h2020-
maap-shift2rail en.pdf

26. Skeen, D., Stonebraker, M.: A formal model of crash recovery in a distributed
systems. IEEE Trans. Softw. Eng. pp. 219–228 (1983)

27. The RAISE Language Group: C. George, P. Haff, K. Havelund, A. E. Haxthausen,
R. Milne, C. B. Nielsen, S. Prehn, K. R. Wagner: The RAISE Specification Lan-
guage. The BCS Practitioners Series, Prentice Hall Int. (1992)

28. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modeling and verification of in-
terlocking systems featuring sequential release. Science of Computer Programming
(2016). https://doi.org/10.1016/j.scico.2016.05.010

29. Walz, H.V., Agostini, R.C., Barker, L., Cherkassky, R., Constant, T., Matheson,
R.: Distributed supervisory protection interlock system SLC acceleration. In: Pro-
ceedings of the IEEE Particle Accelerator Conference: Accelerator Science and
Technology. vol. 3, pp. 1928–1930 (1989). https://doi.org/10.1109/PAC.1989.72972

