Skip to main content

Communication Architecture for Unmanned Aerial Vehicle System

  • Conference paper
  • First Online:
Ad-hoc, Mobile, and Wireless Networks (ADHOC-NOW 2018)

Abstract

During this last decade, Unmanned Aerial Vehicles (UAV) are receiving more attention and are being useful in harvesting area and for many applications and for different critical scenarios. In this paper, we focalize our investigation on the military domain for land inspection. In this context, this paper describes state of the art related to technologies and communication systems that handle cooperation and traffic exchange between Unmanned Aerial Vehicles and Ground Control Station (UGS). Accordingly, we propose a holistic architecture that involves Multi-UAVs, wireless sensor network, cellular network, terrestrial control node and satellite for recovery to get more reliable solutions. Furthermore, this paper details information flows between UAVs and UGS.

Supported by the Tunisian program “Tunisian Federated Research Project” within the framework of the project Supervision Sensitive de lieux Sensibles multi-capteurs: Super-Sens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jawhar, I., Mohamed, N., Al-Jaroodi, J., Agrawal, D.P., Zhang, S.: Communication and networking of UAV-based systems: classification and associated architectures. J. Netw. Comput. Appl. 5(84), 93–108 (2017)

    Article  Google Scholar 

  2. Hayat, S., Yanmaz, E., Muzaffar, R.: Survey on unmanned aerial vehicle networks for civil applications: a communications viewpoint. IEEE Commun. Surv. Tutor. 18(4), 2624–2661 (2016)

    Article  Google Scholar 

  3. Austin, R.: Unmanned Aircraft Systems: UAVS Design, Development and Deployment, vol. 54. Wiley, Hoboken (2011)

    Google Scholar 

  4. http://www.aeronewstv.com/en/lifestyle/sports-leisure/2161-when-using-leisure-drones.html. Accessed 01 Apr 2018

  5. Coffey, T., Montgomery, J.A.: The emergence of mini UAVs for military applications. Def. Horiz. 22, 1 (2002)

    Google Scholar 

  6. Casbeer, D.W., Beard, R.W., McLain, T.W., Li, S.M., Mehra, R.K.: Forest fire monitoring with multiple small UAVs. In: American Control Conference, pp. 3530–3535, IEEE, Portland (2005)

    Google Scholar 

  7. Eisenbeiss, H.: The autonomous mini helicopter: a powerful platform for mobile mapping. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 27, 977–983 (2008)

    Google Scholar 

  8. Steffen, R., Frstner, W.: On visual real-time mapping for unmanned aerial vehicles. In 21st Congress of the International Society for Photogrammetry and Remote Sensing (ISPRS), Beijing, China, pp. 57–62, July 2008

    Google Scholar 

  9. Barr, A.: Amazon Testing Delivery by Drone, CEO Bezos Says, in USA Today. http://www.usatoday.com/story/tech/2013/12/01/amazon-bezos-drone-delivery/3799021/. Accessed 02 Apr 2018

  10. Johnson, T.: FAA May Approve Use of Drones for Hollywood Film-Making, Variety, p. 1, 2 June 2014

    Google Scholar 

  11. Costa, F.G., Ueyama, J., Braun, T., Pessin, G., Osrio, F.S., Vargas, P.A.: The use of unmanned aerial vehicles and wireless sensor network in agricultural applications. In: International Conference on Geoscience and Remote Sensing Symposium (IGARSS), pp. 5045–5048. IEEE, Munich (2012)

    Google Scholar 

  12. Primicerio, J., et al.: A flexible unmanned aerial vehicle for precision agriculture. Precis. Agric. 13(4), 517–523 (2012)

    Article  Google Scholar 

  13. Dockrill, P.: Facebook is preparing its Internet-beaming drone for maiden launch, ScienceAlert. http://www.sciencealert.com/facebook-is-preparing-its-internet-beaming-drone-for-maiden-launch. Accessed 02 Apr 2018

  14. Doherty, P., Rudol, P.: A UAV search and rescue scenario with human body detection and geolocalization. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 1–13. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76928-6_1

    Chapter  Google Scholar 

  15. Waharte, S., Trigoni, N.: Supporting search and rescue operations with UAVs. In: International Conference on Emerging Security Technologies (EST), pp. 142–147. IEEE, Canterbury (2010)

    Google Scholar 

  16. Berrahal, S., Kim, J.H., Rekhis, S., Boudriga, N., Wilkins, D., Acevedo, J.: Border surveillance monitoring using quadcopter UAV-aided wireless sensor networks. J. Commun. Softw. Syst. 12(1), 67–82 (2016)

    Article  Google Scholar 

  17. Puri, A.: A survey of unmanned aerial vehicles (UAV) for traffic surveillance, pp. 1–29. Department of Computer Science and Engineering, University of South Florida (2005)

    Google Scholar 

  18. Bekmezci, I., Sahingoz, O.K., Temel, Ş.: Flying ad-hoc networks (FANETs): a survey. Ad Hoc Netw. 11(3), 1254–1270 (2013)

    Article  Google Scholar 

  19. Maxa, J.A., Mahmoud, M.S.B., Larrieu, N.: Survey on UAANET routing protocols and network security challenges. Ad Hoc Sens. Wirel. Netw. (2017)

    Google Scholar 

  20. Gupta, L., Jain, R., Vaszkun, G.: Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tutor. 18(2), 1123–1152 (2016)

    Article  Google Scholar 

  21. Fahlstrom, P., Gleason, T.: Introduction to UAV Systems. Willy, Hoboken (2012)

    Google Scholar 

  22. Zaheer, Z., Usmani, A., Khan, E., Qadeer, M.A.: Aerial surveillance system using UAV. In: Thirteenth International Conference on Wireless and Optical Communications Networks (WOCN), Telangana State, India, pp. 1–7. IEEE, July 2016

    Google Scholar 

  23. http://ardupilot.org/copter/docs/common-choosing-a-groundstation.htmlcomparison. Accessed 02 Apr 2018

  24. Mission Planner: Ground control station for APM (ArduPilotMega). http://planner.ardupilot.com/wiki/mission-planner-overview/. Accessed 02 Apr 2018

  25. Li, J., Zhou, Y., Lamont, L.: Communication architectures and protocols for networking unmanned aerial vehicles. In: 2013 IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, USA, pp. 1415–1420, December 2013

    Google Scholar 

  26. Frew, E.W., Brown, T.X.: Airborne communication networks for small unmanned aircraft systems. 96(12) (2008)

    Google Scholar 

  27. Andre, T., et al.: Application-driven design of aerial communication networks. IEEE Commun. Mag. 52(5), 129–137 (2014)

    Article  Google Scholar 

  28. Santos, N., Raimundo, A., Peres, D., Sebastio, P., Souto, N.: Development of a software platform to control squads of unmanned vehicles in real-time. International Conference on Unmanned Aircraft Systems (ICUAS), Miami, USA, pp. 1–5. IEEE, June 2017

    Google Scholar 

  29. del Arco, J.C., Alejo, D., Arrue, B.C., Cobano, J.A., Heredia, G., Ollero, A.: Multi-UAV ground control station for gliding aircraft. In: 23th Mediterranean Conference on Control and Automation (MED), Torremolinos, Spain, pp. 36–43. IEEE, June 2015

    Google Scholar 

  30. http://mavlink.org/messages/common

  31. Rodrigues, A.V., Carapau, R.S., Marques, M.M., Lobo, V.: Unmanned aerial vehicles: system architecture and protocols. Sci. Bull. “Mircea cel Batran” Naval Academy 20(1), 140 (2017)

    Google Scholar 

  32. Butcher, N., Stewart, A., Biaz, S.: Securing the MAVLink communication protocol for unmanned aircraft systems. Appalachian State University, USA (2013)

    Google Scholar 

  33. Marty, J.A.: Vulnerability analysis of the MAVLink protocol for command and control of unmanned aircraft (no. Afit-eng-14-m-50). Air Force Institute of Technology Wright-Patterson Graduate School of Engineering and Management (2013)

    Google Scholar 

  34. Skinnemoen, H.: UAV satellite communications live mission-critical visual data. In: International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), Yogyakarta, Indonesia, pp. 12–19. IEEE, November 2014

    Google Scholar 

  35. Gabriel, C.: WiMAX: The Critical Wireless Standard 802.16 and Other Broadband Wireless Options. Blueprint WiFi Monthly Research Report. ARC Chart Ltd. (2003)

    Google Scholar 

  36. Ribeiro, C.: Bringing wireless access to the automobile: a comparison of Wi-Fi, WiMAX, MBWA, and 3G. In: 21st Computer Science Seminar, pp. 1–7, April 2005

    Google Scholar 

  37. Volko, T., Moucha, V., Lipovsk, P., Draganov, K.: Possibility of usage the latest GSM generations for the purpose of UAV communication. In: New Trends in Signal Processing (NTSP), pp. 1–4. IEEE, October 2016

    Google Scholar 

  38. Zhu, L., Yin, D., Yang, J., Shen, L.: Research of remote measurement and control technology of UAV based on mobile communication networks. In: IEEE International Conference on Information and Automation, Gothenburg, Sweden, pp. 2517–2522. IEEE, August 2015

    Google Scholar 

  39. Rahman, M.A.: Enabling drone communications with WiMAX Technology. In: The 5th International Conference on Information, Intelligence, Systems and Applications, IISA, Chania, Crete, Greece, pp. 323–328. IEEE, July 2014

    Google Scholar 

  40. Fourty, N., Val, T., Fraisse, P., Mercier, J.J.: Comparative analysis of new high data rate wireless communication technologies from Wi-Fi to WiMAX. In: International Conference on Autonomic and Autonomous Systems and Networking and Services, ICAS-ICNS, p. 66. IEEE (2005)

    Google Scholar 

  41. Rodrigues, M., Pigatto, D.F., Fontes, J.V., Pinto, A.S., Diguet, J.P., Branco, K.R.: UAV integration into IoIT: opportunities and challenges. In: ICAS 2017, vol. 95. ISO 690 (2017)

    Google Scholar 

  42. Kouba, A., Qureshi, B., Sriti, M.F., Javed, Y., Tovar, E.: A service-oriented cloud-based management system for the internet-of-drones. In: IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Coimbra, Portugal, pp. 329–335. IEEE (2017)

    Google Scholar 

  43. Mahmoud, S., Mohamed, N.: Broker architecture for collaborative UAVs cloud computing. In: 2015 International Conference on Collaboration Technologies and Systems (CTS), pp. 212–219. IEEE. ISO 690, June 2015

    Google Scholar 

  44. Luo, C., Nightingale, J., Asemota, E., Grecos, C.: A UAV cloud system for disaster sensing applications. In: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–5. IEEE, May 2015

    Google Scholar 

  45. Yuan, Z., Huang, X., Sun, L., Jin, J.: Software defined mobile sensor network for micro UAV swarm. In: International Conference on Control and Robotics Engineering (ICCRE), Singapore, pp. 1–4. IEEE, April 2016

    Google Scholar 

  46. Sharma, V., Song, F., You, I., Chao, H.C.: Efficient management and fast handovers in software defined wireless networks using UAVs. IEEE Netw. 31(6), 78–85 (2017). ISO 690

    Article  Google Scholar 

  47. Barritt, B., Kichkaylo, T., Mandke, K., Zalcman, A., Lin, V.: Operating a UAV mesh internet backhaul network using temporospatial SDN. In: Aerospace Conference, Mountain Trail, USA, pp. 1–7. IEEE, March 2017

    Google Scholar 

Download references

Acknowledgement

This work is supported by the Tunisian program “Tunisian Federated Research Project” within the framework of the project Supervision Sensitive de lieux Sensibles multi-capteurs: Super-Sens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lamia Chaari Fourati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krichen, L., Fourati, M., Fourati, L.C. (2018). Communication Architecture for Unmanned Aerial Vehicle System. In: Montavont, N., Papadopoulos, G. (eds) Ad-hoc, Mobile, and Wireless Networks. ADHOC-NOW 2018. Lecture Notes in Computer Science(), vol 11104. Springer, Cham. https://doi.org/10.1007/978-3-030-00247-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00247-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00246-6

  • Online ISBN: 978-3-030-00247-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics