Skip to main content

Low Frequency Mobile Communications in Underwater Networks

  • Conference paper
  • First Online:
Ad-hoc, Mobile, and Wireless Networks (ADHOC-NOW 2018)

Abstract

We present a receiver for low frequency underwater acoustic communications addressing the Doppler shift that occurs during the transmission of frames at a very low data rate. The receiver handles constant or variable (linearly and nonlinearly) Doppler shift patterns. The waveform supported by the receiver is adapted to difficult underwater channel conditions, such as the ones present in long range under-ice Arctic communications. The bandwidth is extremely narrow (less than six Hz). Redundancy is very high (300%). Our main contributions are in an aspect of the receiver that handles arbitrary types of Doppler shifts. We use the idea of signal tracking function. It follows the progression of a carrier during the reception of a frame. Evaluation results are reported using our GNU Radio implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An analogous formulation using two instead of three cartesian coordinates is possible in the Euclidean plane.

References

  1. Otnes, R., Voldhaug, J.E., Haavik, S.: On communication requirements in underwater surveillance networks. In: OCEANS 2008-MTS/IEEE Kobe Techno-Ocean, pp. 1–7. IEEE (2008)

    Google Scholar 

  2. Otnes, R., et al.: Underwater Acoustic Networking Techniques. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25224-2

    Book  Google Scholar 

  3. Button, R.W., Kamp, J., Curtin, T.B., Dryden, J.: A survey of missions for unmanned undersea vehicles. RAND National Defense Research Institute (2009)

    Google Scholar 

  4. Wikipedia: Underwater locator beacon (2018). https://en.wikipedia.org/wiki/Underwater_locator_beacon

  5. Decarpigny, J., Hamonic, B., Wilson, O.: The design of low frequency underwater acoustic projectors: present status and future trends. IEEE J. Ocean. Eng. 16(1), 107–122 (1991)

    Article  Google Scholar 

  6. Hixson, E.: A low-frequency underwater sound source for seismic exploration. J. Acoust. Soc. Am. 126(4), 2234–2234 (2009)

    Article  Google Scholar 

  7. Stojanovic, M.: On the relationship between capacity and distance in an underwater acoustic communication channel. SIGMOBILE Mob. Comput. Commun. Rev. 11(4), 34–43 (2007)

    Article  Google Scholar 

  8. Freitag, L., Partan, J., Koski, P., Singh, S.: Long range acoustic communications and navigation in the arctic. In: OCEANS 2015 - MTS/IEEE Washington, pp. 1–5, October 2015

    Google Scholar 

  9. Ahmad, A.-M., Barbeau, M., Garcia-Alfaro, J., Kassem, J., Kranakis, E., Porretta, S.: Doppler effect in the underwater acoustic ultra low frequency band. In: Zhou, Y., Kunz, T. (eds.) Ad Hoc Networks. LNICST, vol. 223, pp. 3–12. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74439-1_1

    Chapter  Google Scholar 

  10. Ahmad, A.-M., Barbeau, M., Garcia-Alfaro, J., Kassem, J., Kranakis, E., Porretta, S.: Doppler effect in the acoustic ultra low frequency band for wireless underwater networks. Mob. Netw. Appl. (2018). https://doi.org/10.1007/s11036-018-1036-9

  11. Fano, R.: A heuristic discussion of probabilistic decoding. IEEE Trans. Inf. Theory 9(2), 64–74 (1963)

    Article  MathSciNet  Google Scholar 

  12. Barbeau, M.: Weak signal underwater communications in the ultra low frequency band. In: Proceedings of the 7th GNU Radio Conference, San Diego, CA, U.S.A., pp. 1–8 (2017). https://pubs.gnuradio.org/index.php/grcon/article/view/20/14

  13. Wu, B.: A correction of the half-power bandwidth method for estimating damping. Arch. Appl. Mech. 85, 315–320 (2015)

    Article  Google Scholar 

  14. Taylor, J., Walker, B.: WSPRing around the world. QST 94(10), 30–32 (2010)

    Google Scholar 

  15. Franke, S., Taylor, J.: WSPR (2017). Accessed 9 May 2017

    Google Scholar 

  16. Karn, P.: Convolutional decoders for amateur packet radio. In: ARRL Digital Communications Conference, pp. 45–50 (1995)

    Google Scholar 

  17. McCartney, B.S.: Underwater acoustic positioning systems: state of the art and applications in deep water. Int. Hydrograph. Rev. LVIII(1), 91–113 (1981)

    Google Scholar 

  18. Blouin, S., Barbeau, M.: An experimental baseline for underwater acoustic broadcasts. In: 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), pp. 1–5, September 2017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquin Garcia-Alfaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmad, AM., Barbeau, M., Garcia-Alfaro, J., Kassem, J., Kranakis, E., Porretta, S. (2018). Low Frequency Mobile Communications in Underwater Networks. In: Montavont, N., Papadopoulos, G. (eds) Ad-hoc, Mobile, and Wireless Networks. ADHOC-NOW 2018. Lecture Notes in Computer Science(), vol 11104. Springer, Cham. https://doi.org/10.1007/978-3-030-00247-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00247-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00246-6

  • Online ISBN: 978-3-030-00247-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics