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Abstract

We investigate for temporal graphs the computational complexity of separating two
distinct vertices s and z by vertex deletion. In a temporal graph, the vertex set is fixed
but the edges have (discrete) time labels. Since the corresponding Temporal (s, z)-Sep-
aration problem is NP-complete, it is natural to investigate whether relevant special
cases exist that are computationally tractable. To this end, we study restrictions of the
underlying (static) graph—there we observe polynomial-time solvability in the case of
bounded treewidth—as well as restrictions concerning the “temporal evolution” along the
time steps. Systematically studying partially novel concepts in this direction, we identify
sharp borders between tractable and intractable cases.

Keywords: Temporal Paths, Temporal Restrictions, Unit Interval Graphs, NP-completeness,
Fixed-Parameter Tractability, Dynamic Programming

1 Introduction

Reachability, connectivity, and robustness in networks depend often on time. For instance,
in public transport or human contact networks, available connections or contacts are time-
dependent. To model such time-dependent aspects, one turns from static graphs to temporal
graphs. Formally, an undirected temporal graph G = (V,E, τ) is an ordered triple consisting of
a set V of vertices, a set E ⊆

(
V
2

)
×{1, 2, . . . , τ} of time-edges, and a maximal time label τ ∈ N.

We study the problem of finding a small set of vertices in a temporal graph whose removal
disconnects two designated terminals: a classic, polynomial-time solvable problem in (static)
graph theory.

Temporal (s, z)-Separation
Input: A temporal graph G = (V,E, τ), two distinct vertices s, z ∈ V , and k ∈ N.
Question: Does G admit a temporal (s, z)-separator of size at most k?
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†Supported by the DFG, project MATE (NI 369/17).
‡Supported by the DFG, project MATE (NI 369/17).
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Figure 1: Computational complexity of Temporal (s, z)-Separation for some graph classes of the
underlying graph. An edge between two classes indicates containment of the lower in the upper class.
For the classes of line, complete-but-one, bipartite, and planar graphs, we provide for which values
of the maximum time label τ NP-completeness is proven as well as the parameterized complexity of
Temporal (s, z)-Separation when parameterized by the solution size k. Note that in the case
of planar graphs our NP-hardness proof only holds for unbounded τ . Moreover, the parameterized
complexity regarding k is unknown.

Herein, a vertex set S ⊆ V \ {s, z} is a temporal (s, z)-separator for a given temporal graph
G = (V,E, τ) with s, z ∈ V if there is no temporal (s, z)-path in G−S := (V \S, {({v, w}, t) ∈
E | v, w ∈ V \ S}, τ). A temporal (s, z)-path of length ` in a temporal graph G = (V,E, τ)
is a sequence P = (({v0, v1}, t1), ({v1, v2}, t2), . . . , ({v`−1, v`}, t`)) of time-edges in E, where
s = v0, z = v`, vi 6= vj for all i, j ∈ {0, 1, . . . , `} with i 6= j, and ti ≤ ti+1 for all i ∈
{1, 2, . . . , ` − 1}.1 Temporal (s, z)-Separation is NP-complete [19]. In this work, we
study Temporal (s, z)-Separation on restricted classes of temporal graphs with the goal
to identify computationally tractable cases.

So far, in the literature one basically finds two different directions concerning the definition
of temporal graph classes. One direction is to define temporal graph classes through the
underlying graph (that is, essentially, the graph obtained by forgetting about the time labels
of the edges) [3, 15, 31]. Herein, one restricts the input temporal graph to have its underlying
graph being contained in some specific graph class. The other direction is to consider properties
expressible through temporal aspects [11, 16, 22, 27]. Such properties are, for instance, each
layer being a subgraph of its succeeding layer, or the temporal graph being periodic, that
is, having a subsequence of layers which is repeated in the same order for some periods. In
this work, we study Temporal (s, z)-Separation on temporal graph classes from both
directions.

Our contributions. We show that Temporal (s, z)-Separation remains NP-complete
on many restricted temporal graph classes.

• Temporal (s, z)-Separation remains NP-complete on temporal graphs whose un-
derlying graph falls into a class of graphs containing complete-but-one graphs (that is,

1In the literature, temporal paths are also known as journeys [9]. However, in some work a journey has
strictly increasing labels [1, 2, 25, 26].
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complete graphs where exactly one edge is missing) or line graphs. However, if the un-
derlying graph has bounded treewidth, then Temporal (s, z)-Separation becomes
polynomial-time solvable (see Figure 1 for an overview).

• Temporal (s, z)-Separation remains NP-complete on temporal graphs where each
layer contains only one edge (Corollary 3.2). In contrast, if we require each layer to
be a unit interval graph and impose suitable restrictions on how the intervals may
change over time, then Temporal (s, z)-Separation becomes tractable (Theorem 6.4,
Theorem 6.6).

• Regarding temporal graph classes defined solely by restrictions on how the edge sets
of the layers may change over time, Temporal (s, z)-Separation becomes solvable
in polynomial time on temporal graphs where one layer contains all others (grounded),
on graphs where all layers are identical (1-periodic or 0-steady), or when the number
of periods is at least the number of vertices. In all other considered cases Temporal
(s, z)-Separation remains NP-complete (see Table 1 in Section 5 for an overview).

Related work. Kempe et al. [19] proved that Temporal (s, z)-Separation is NP-complete.
Zschoche et al. [31] proved that Temporal (s, z)-Separation remains NP-complete on tem-
poral graphs with bipartite or planar underlying graphs. Moreover, Temporal (s, z)-Sepa-
ration is W[1]-hard when parameterized by the separator size k [31].

Casteigts et al. [11] defined twelve different classes of temporal graphs and showed a
corresponding inclusion diagram. Among these classes, they define temporal graph classes
with recurrence or periodicity of edges. On a slightly different notion of the latter class,
Flocchini et al. [16] studied the problem of exploring a temporal graph, that is, asking whether
it is possible to visit all vertices of the graph with a temporal walk. Kuhn et al. [22] studied the
problem of token dissemination on temporal graphs where for each time-interval of length T ,
all layers in the interval admit the same spanning tree.

The class of temporal graphs with underlying graphs of bounded treewidth are considered
in the context of temporal graph exploration [15] and single-source temporal connectivity [3].
Erlebach et al. [15] studied the problem of temporal graph exploration on temporal graphs
with underlying graphs being planar and of bounded vertex degree. They also introduced the
class of temporal graphs with regularly present edges, where the number of consecutive time
steps for which any edge can be absent is lower- and upper-bounded (a similar class without
the lower bound is also introduced by Casteigts et al. [11, Class 7]). Michail and Spirakis [27]
studied a temporal version of the Traveling Salesperson Problem on temporal graphs
with respect to the smallest number d such that every vertex can reach any other vertex at
any time in at most d time steps.

Organization. In Section 2 we introduce all necessary notation and terminology concerning
graph theory and (parameterized) computational complexity theory. In the next three section,
we discuss and investigate three canonical and incomparable ways to restrict temporal graphs:
In Section 3 we present our results for Temporal (s, z)-Separation on temporal graph
classes that are defined by restricting the layers to be contained in certain graph classes. In
Section 4 we present our results for Temporal (s, z)-Separation on temporal graphs with
restricted underlying graphs. In Section 5 we discuss some temporal restrictions known from
the literature that restrict how the edge sets of layers may relate to each other. In Section 6
we introduce a new class of temporal graphs that combines restrictions on the layers with
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temporal restrictions and hence does not fit in any of the previous three categories: (almost)
order-preserving temporal unit interval graphs and we present our results for Temporal
(s, z)-Separation on those temporal graphs. We conclude in Section 7.

2 Preliminaries

As a convention, N denotes the natural numbers without zero. For n ∈ N, we use [n] :=
[1 : n] := {1, 2, . . . , n}. Analogously, for a sequence x1, x2, . . . , xn and a, b ∈ [n], a < b, we
write x[a:b] for the subsequence xa, xa+1, . . . , xb.

Static graphs. We use basic notations from (static) graph theory [13]. Let G = (V,E) be
an undirected, simple graph. V (G) and E(G) denote the set of vertices and set of edges of G,
respectively. We denote by G−V ′ := (V \V ′, {{v, w} ∈ E | v, w ∈ V \V ′}) the graph G without
the vertices in V ′ ⊆ V . For V ′ ⊆ V , G[V ′] := G − (V \ V ′) is the induced subgraph of G on
the vertices V ′. A path of length ` is sequence of edges P = ({v1, v2}, {v2, v3}, . . . , {v`, v`+1})
where vi 6= vj for all i, j ∈ [`− 1] with i 6= j. We set V (P ) := {v1, v2, . . . , v`+1}. Path P is an
(s, z)-path if s = v1 and z = v`+1. A set S ⊆ V \ {s, z} of vertices is an (s, z)-separator in G
if there is no (s, z)-path in G− S.

A tree decomposition of a graph G is a pair T := (T, (Bi)i∈V (T )) consisting of a tree T and
a family (Bi)i∈V (T ) of bags Bi ⊆ V (G), such that
(i) for all vertices v ∈ V (G) the set B−1(v) := {i ∈ V (T ) | v ∈ Bi} is non-empty and induces

a subtree of T , and
(ii) for every edge e ∈ E(G) there is an i ∈ V (T ) with e ⊆ Bi.

The width of T is max{|Bi| − 1 | i ∈ V (T )}. The treewidth tw(G) of G is defined as the
minimal width over all tree decompositions of G.

Temporal graphs. Let G = (V,E, τ) be a temporal graph. We call the graph Gi(G) =
(V,Ei(G)) the layer i of G where Ei(G) := {{v, w} | ({v, w}, i) ∈ E}. The underlying
graph G↓ of G is defined as G↓ := (V,E↓), where E↓ := {e | ∃t : (e, t) ∈ E}. (We drop G
in the notations if it is clear from the context.) For X ⊆ V we define the induced temporal
subgraph of G by X by G[X] := (X, {({v, w}, t) ∈ E | v, w ∈ X}, τ). We say that a temporal
graph G is connected if its underlying graph G↓ is connected. Let s, z ∈ V . The departure
time (arrival time) of a temporal (s, z)-path P = ((e1, t1), (e2, t2), . . . , (e`, t`)) is t1 (t`), the
traversal time of P is t` − t1, and the length of P is `. The vertices visited by P are denoted
by V (P ) :=

⋃`
i=1 ei. Throughout the whole paper we assume that the temporal input graph

G is connected and that there is no time-edge between s and z. Furthermore, in accordance
with Wu et al. [30] we assume that the time-edge set E is ordered by ascending labels.2

The concatenation of two temporal graphs G1 = (V,E1, τ1), G2 = (V,E2, τ2) is denoted by
G1 ◦G2 := (V,E1 ∪ {(e, t+ τ1) | (e, t) ∈ E2}, τ1 + τ2). Furthermore, we define that G1

1 := G1

and Gx
1 := Gx−1

1 ◦G1 for all integers x ≥ 2.
We begin by noting that one can efficiently find temporal (s, z)-paths by using the static

expansion of a temporal graph. Intuitively, the static expansion of a temporal graph G is a
directed graph consisting of the union of the layers of G where each layer has its own vertex
set, and additional edges from one vertex of a layer to the same vertex in the next layer.

2If this is not the case, then E can be sorted by ascending labels with bucketsort or mergesort
in O(min{τ, |E| log |E|}) time.
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Definition 2.1. For a temporal graph G = (V = {v1, . . . , vn−2, s, z},E, τ), the static expan-
sion of (G, s, z) is the directed graph H := (V ′, A) with

V ′ := {s, z} ∪ {ut,j | j ∈ [n− 2] ∧ t ∈ φ(vj)}
A := A′ ∪As ∪Az ∪Acol

A′ := {(ui,j , ui,j′), (ui,j′ , ui,j) | ({vj , vj′}, i) ∈ E}
As := {(s, ui,j) | ({s, vj}, i) ∈ E}
Az := {(ui,j , z) | ({vj , z}, i) ∈ E}
Acol := {(ut,j , ut′,j) | (t, t′) ∈ ~φ(vj) ∧ j ∈ [n− 2]} ,

where, for all v ∈ {v1, v2, . . . , vn−2} = V \ {s, z},

φ(v) := {t | t ∈ [τ ],∃w : ({v, w}, t) ∈ E}
~φ(v) := {(t, t′) ∈ φ(v)2 | t < t′ ∧ @t′′ ∈ φ(v) : t < t′′ < t′} .

The set Acol is referred to as the set of column-edges of H.

Lemma 2.2. Given a temporal graph G = (V,E, τ) and two distinct vertices s and z, a
temporal (s, z)-path can be computed in O(|E|) time.

Proof. Let G = (V,E, τ) be a temporal graph with vertex set V := {v1, v2, . . . , vn−2} ∪ {s, z}
and let H be the static expansion of G. Observe that each temporal (s, z)-path in G has a
one-to-one correspondence to some (s, z)-path in H and that H can be computed in O(|E|)
time [31]. Thus we can find a temporal (s, z)-path in G, using a breadth-first search on the
static expansion of (G, s, z). This gives an overall running time of O(|E|).

Parameterized complexity. We use standard notation and terminology from parameter-
ized complexity [12, 14, 17, 29] and give here a brief overview of the most important concepts.
A parameterized problem is a language L ⊆ Σ∗ ×N, where Σ is a finite alphabet. We call the
second component the parameter of the problem. A parameterized problem is in the complex-
ity class XP if there is an algorithm that solves each instance (I, r) in |I|f(r) time, for some
computable function f . It is fixed-parameter tractable (in the complexity class FPT) if there
is an algorithm that solves each instance (I, r) in f(r) · |I|O(1) time, for some computable
function f . There is the W-hierarchy of complexity classes for parameterized problems, of
which the most basic one is called W[1]. All parameterized complexity classes discussed here
are closed under parameterized reductions, which may run in FPT-time and additionally set
the new parameter to a value that only depends on the old parameter. If a parameterized
problem is W[1]-hard, then it is (presumably) not in FPT.

3 Layer-wise Restrictions for Temporal Graphs

Two approaches to define temporal graph classes derive from restricting either (i) each layer
or (ii) the underlying graph to be contained in some specific graph class. Notably, these
restrictions are both independent of the order of the layers and hence appear to not fully
capture the temporal characteristics of a given temporal graph. This section considers case (i),
i.e. restrictions on the layers of a temporal graph. Restricting the layers to fall into a specific

5



graph class neither captures any temporal aspect of the temporal graph nor the full picture
drawn by all layers together. In fact, we show that such restrictions alone are not helpful:
Temporal (s, z)-Separation is already NP-complete when each layer consists of at most
one edge.

Lemma 3.1. There is a polynomial-time many-one reduction that maps any instance (G =
(V,E, τ), s, z, k) of Temporal (s, z)-Separation to an equivalent instance (G′ = (V,E′, τ ′),
s, z, k) such that each layer in G′ has at most one edge and τ ′ ≤ τ · |V |4.

Proof. Let G = (V,E, τ) be a temporal graph. We construct G′ := (V,E′, τ ′) by concatenat-
ing for each layer i of G a temporal graph G

|Ei|
i such that there is a temporal path in G

|Ei|
i

if and only if there is a path in layer i of G.
For each layer i of G we construct a temporal graph Gi := (V,Ei, τi) by fixing an arbitrary

total order on the edge set Ei = {e1, e2, . . . , em} of layer i in G and setting the time-edge set
of layer j of Gi to be {(ej , j)}. Now, we build G′ := G

|E1|
1 ◦G|E2|

2 ◦ · · · ◦G|Eτ |τ , where |Ei|
is the number of edges in layer i of G for all i ∈ [τ ]. This is obviously a polynomial-time
construction. Since, for all i ∈ [τ ], |Ei| ≤ |V |2 and each Gi has |Ei| many layers, we know
that τ ′ ≤ τ · |V |4.

Let i ∈ [τ ] and v, w ∈ V . Observe that Gi(G) is the underlying graph of both, Gi

and G
|Ei|
i . Since every temporal path is also a path in the underlying graph, it is easy to see

that for each temporal (v, w)-path in G
|Ei|
i there is a (v, w)-path in layer i of G which visits

the vertices in the same order. We claim that for each (v, w)-path P of length ` in layer i
of G there is a temporal (v, w)-path in G`

i which visits the vertices in the same order. Let
V (P ) =: {v = v0, v1, . . . , v`+1 = w} such that vj is visited before vj+1, for all j ∈ [0 : `]. We
prove the claim by induction on `. If ` = 1, then we know that there is a time-edge between
v and w in G1. For the induction step we observe that there is a time-edge between v = v0
and v1 in Gi and, by the induction hypothesis, there is a temporal (v1, w)-path of length `−1
in G`−1

i which visits the vertices in the same order as P . Since ` ≤ |Ei|, we have that for each
(v, w)-path in layer i of G there is a temporal (v, w)-path in G

|Ei|
i which visits the vertices in

the same order, where v, w ∈ V and i ∈ [τ ]. If follows that a vertex set S ⊆ V \ {s, z} is a
temporal (s, z)-separator in G if and only if S is a temporal (s, z)-separator in G′, because in
the construction of G′ we replaced layer i of G with G

|Ei|
i .

Lemma 3.1 together with known hardness reductions for Temporal (s, z)-Separation [19,
31] implies the following.

Corollary 3.2. Temporal (s, z)-Separation is NP-complete and W[1]-hard when param-
eterized by the separator size k even if each layer has at most one edge.

Now we consider a scenario in which the temporal graphs have a certain geometric inter-
pretation. For example in data sets where vertices are individuals and edges model physical
proximity (see e.g. [4]), it is a plausible assumption that the individual layers are disc intersec-
tion graphs (assuming the individuals only move in the plane). We investigate the restriction
to (unit) interval graphs, which constitute the one-dimensional equivalent, meant as a starting
point for further research.

Next, we introduce temporal interval graphs. We call a temporal graph G = (V,E, τ)
a temporal interval graph if every layer Gi is an interval graph. We say that a temporal
graph G = (V,E, τ) is a temporal unit interval graph if every layer Gi is a unit interval
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graph. By Lemma 3.1, Temporal (s, z)-Separation on temporal unit interval graph is
NP-complete. Furthermore the problem remains NP-complete even if τ is constant:

Proposition 3.3. Temporal (s, z)-Separation on temporal unit interval graphs is NP-
complete for any fixed τ ≥ 6.

Proof. Zschoche et al. showed in [31, Thm. 3.1] by reduction from Vertex Cover that
Temporal (s, z)-Separation is NP-complete for fixed τ ≥ 2. We modify that proof to
ensure that each layer of the resulting temporal graph is a unit interval graph.

Vertex Cover
Input: An undirected graph G = (V,E) and an integer k ∈ N.
Question: Is there a subset V ′ ⊆ V of size at most k such that for all {v, w} ∈ E it

holds {v, w} ∩ V ′ 6= ∅?
The basic idea behind the reduction is to create a gadget for each vertex such that one can

use two types of vertex sets to separate s from z in this gadget: a small one and large one.
Then, for each edge in the Vertex Cover instance, we connect the corresponding gadgets
in such a way, that at least in one of the gadgets it is necessary to take the large vertex set.
Hence, taking the large vertex set from a gadget into the temporal (s, z)-separator corresponds
to taking the vertex into the vertex cover.

Let I := (G = (V,E), k) be a Vertex Cover instance and n := |V |. We construct a
Temporal (s, z)-Separation instance I ′ := (G′ := (V ′,E′, 6), s, z, n+ k) by setting

V ′ :=
{
x, v, xv, x

′
v, xvw

∣∣ v, w ∈ V, x ∈ {s, z}}
and

E′ := (Eα(s)× {1}) ∪ (Eα(z)× {6})
∪ (Eβ(s)× {2}) ∪ (Eβ(z)× {5})
∪ (Eγ(s, z)× {4}) ∪ (Eγ(z, s)× {3})
∪ (Eδ × {3})

where we define, for any x, y ∈ {s, z}, the following four edge classes

Eα(x) :=

({x, xv, x′v : v ∈ V }
2

)
,

Eβ(x) :=
⋃
v∈V

({xv, x′v, xvv}
2

)
∪
({xvw : w ∈ V }

2

)
,

Eγ(x, y) :=
⋃
v∈V

{
{xv, x′v}, {v, xv}, {v, x′v}, {v, yvv}

}
,

Eδ := {{svw, zwv}, {swv, zvw} | {v, w} ∈ E}

(compare also Figure 2).
Observe that no temporal path can use more than one edge from Eδ as it would need to

use an edge from Eβ in between. Consequently we may assume that any minimum temporal
(s, z)-separator only contains vertices from the set {v, svv, zvv | v ∈ V } as we could exchange
any other vertex for one of these. After these observations the rest of the proof works in
complete analogy to the proof of Zschoche et al. [31, Prop. 3.2].
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Figure 2: Underlying graph of the Temporal (s, z)-Separation instance resulting from a Vertex
Cover instance G = (V,E) on three vertices V = {u, v, w} and one edge E = {{u, v}}.

To see that each layer of G′ is in fact a unit interval graph, first observe that Eγ(z, s) and
Eδ are vertex-disjoint and thus each connected component of each layer is taken from a single
edge class. Furthermore, for any choice x, y ∈ {s, z},

• Eα(x) forms a clique of size 2n+ 1;
• each connected component of Eβ(x) consists of a triangle and a size n clique that share

exactly one vertex;
• each connected component of Eγ(x, y) is the union of a triangle and a single edge, joined

on a common vertex;
• Eδ is a disjoint union of edges.

In summary, each connected component of each layer is either a clique or a union of two cliques
sharing a single vertex and thus an interval graph.

4 Restrictions of the Underlying Graph

After having investigated layer-wise restrictions, we now turn to case (ii), i.e. the study of
temporal graphs whose underlying graph is contained in some graph class. See Figure 1 for
an overview of the results.

One such class is that of complete-but-one graphs, in which all but one possible edges
are present. We show that Temporal (s, z)-Separation is NP-hard even if the underlying
graph of the temporal input graph is complete-but-one. The main idea that we can reduce
the general problem to that on temporal graphs with a complete-but-one underlying graph by
saturating the instance with “useless” edges, that do not create any new temporal (s, z)-paths.
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Proposition 4.1. There is a polynomial-time many-one reduction that maps any instance
(G = (V,E, τ), s, z, k) of Temporal (s, z)-Separation to an equivalent instance (G′ =
(V,E′, τ ′), s, z, k) such that E(G′↓) =

(
V
2

)
\ {s, t}.

Proof. We construct G′ as (V,E′, τ + 2) where

E′ := {(e, t+ 1) | (e, t) ∈ E}

∪
{

({v, w}, 1)

∣∣∣∣ {v, w} ∈ (V \ {s}2

)
\ E(G↓)

}
∪ {({s, v}, τ + 2) | v ∈ V \ {z} ∧ {s, v} /∈ E(G↓)} .

The one-to-one correspondence of the temporal (s, z)-separators inG andG′ is immediate.

Proposition 4.1 implies that Temporal (s, z)-Separation remains NP-complete on all tem-
poral graphs where the underlying graph falls into a graph class containing all complete-but-
one graphs, for instance the classes of unit interval or threshold graphs (see Brandstadt et al.
[8] for definitions). We refer to Figure 1 in Section 1 for an overview.

Note that complete-but-one graphs are not line graphs (see Brandstadt et al. [8] for line
graphs), as each complete-but-one graph (with at least five vertices) contains the complete-
but-one graph on five vertices as an induced subgraph (see Beineke [5, Graph G3]). Hence, we
next study Temporal (s, z)-Separation on temporal graphs where the underlying graph
is a line graph.

Proposition 4.2. Temporal (s, z)-Separation on temporal graphs where the underlying
graph is a line graph is NP-complete.

Proof. A temporal (s, z)-path P =
(
({s = v0, v1}, t1), ({v1, v2}, t2), . . . ,

({v`−1, v` = z}, t`)
)
is called strict if ti < ti+1 for all i ∈ [`− 1]. A vertex set S is a strict tem-

poral (s, z)-separator if there is no strict temporal (s, z)-path in the temporal graph G − S.
The Strict Temporal (s, z)-Separation problem is the “strict” variant of Temporal
(s, z)-Separation and asks for a strict temporal (s, z)-separator instead of a temporal (s, z)-
separator.

We reduce from the NP-complete Strict Temporal (s, z)-Separation where each layer
is equal and there is no vertex in the underlying graph of degree at most one [31]. Our reduction
is similar to the reduction from Strict Temporal (s, z)-Separation to Temporal (s, z)-
Separation due to Zschoche et al. [31]. Let (G = (V,E, τ), s, z, k) be an instance of Strict
Temporal (s, z)-Separation with Gi(G) = Gj(G) for all i, j ∈ [τ ]. We construct an
instance (G′ = (V ′,E′, τ ′), s∗, z∗, k) of Temporal (s, z)-Separation, where G′↓ is a line
graph, as follows.

Let G = (V,E) := G↓. We construct a graph G′ = (V ′, E′) which will be the underlying
graph of G′ (refer to Figure 3 for an illustration). Let G′ be initially a copy of G. As a first
step, iteratively replace each vertex v ∈ V (G) by a set Wv of deg(v) + 1 vertices such that
each edge incident with v is incident with exactly one vertex from Wv and every vertex in Wv

is of degree at most one, where deg(v) denotes the degree of v. Note that there is exactly one
vertex in Wv not being incident with an edge, and we call this vertex v∗. Denote the edge set
of G′ after the first step by E′′. Next, replace each edge {x, y} ∈ E′ by two paths of length
three. Denote by ex(x,y), e

y
(x,y) and by ex(y,x), e

y
(y,x) the inner vertices of each path respectively,

where ex(x,y), e
x
(y,x) are neighbors of x and ey(x,y), e

y
(y,x) are neighbors of y. Next, connect the

9



Figure 3: The underlying graph G↓ on the left-hand side, the graph G′ in the middle, and the graph
H (dotted/green) on the right-hand side. Red edges (stilts) are the only edges present in layer 1.

neighbors of x on both paths by an edge, and connect the neighbors of y on both paths by
an edge (we refer to these edges as path stilts). Finally, for each v ∈ V , turn Wv into a clique
(and refer to all edges in the clique not incident with v∗ as clique stilts). This finishes the
construction of G′. It is not hard to see that G′ is indeed a line graph (see Figure 3 for the
graph H for which holds L(H) = G′).

We constructG′ with vertex set V ′ and underlying graphG′ as follows. Add the set {(e, 1) |
e ∈ E′ is a stilt}. For each 2 ≤ t ≤ 2τ + 1, add the set {({v∗, w}, t) | w∗ ∈ Wv \ {v∗}}. For
each 1 ≤ t ≤ τ , add the set of temporal edges {({x, ex(x,y)}, 2t), ({ex(x,y), e

y
(x,y)}, 2t), ({y, e

y
(y,x)}, 2t),

({ex(y,x), e
y
(y,x)}, 2t) | {x, y} ∈ E′′} and {({x, ex(y,x)}, 2t + 1), ({y, ey(y,x)}, 2t + 1) | {x, y} ∈ E′′}.

This finishes the construction of G′. It is not difficult to see that G′↓ = G′.
For the correctness, it is enough to observe the following. There is no temporal (s∗, z∗)-path

starting at time step one. It holds that {v, w} ∈ E if and only if there is a temporal (v∗, w∗)-
path starting at t and ending at t + 1 for every 2 ≤ t ≤ 2τ that does not contain any u∗

except for v∗ and w∗. We can assume a minimum temporal (s∗, z∗)-separator in G′ to only
contain vertices in {v∗ | v ∈ V }. Hence, the following is immediate: if S ⊆ V is a strict
temporal (s, z)-separator in G, then {v∗ | v ∈ S} is a temporal (s∗, z∗)-separator in G′, and
vice versa.

An alternative way to classify an instance of a graph-theoretic problem is through its
(graph) parameters. We study Temporal (s, z)-Separation according to some parame-
terizations. In the following we show that any upper bound on the maximum length of a
temporal (s, z)-path leads to a straightforward search-tree algorithm. This gives us a tool
to solve Temporal (s, z)-Separation on temporal graphs where the underlying graph is
restricted in a way that allows us to upper-bound the length of any temporal path.

Lemma 4.3. Temporal (s, z)-Separation is solvable in O(`k · |E|) time, and thus is fixed-
parameter tractable when parameterized by k + `, where k is the solution size and ` is the
maximum length of a temporal (s, z)-path.

Proof. We present a depth-first search algorithm (see Algorithm 1) to show fixed-parameter
tractability. Let I := (G = (V,E, τ), s, z, k) be an instance of Temporal (s, z)-Separa-
tion. The basic idea of our algorithm is simple: at least one vertex of each temporal (s, z)-path
must be in the temporal (s, z)-separator. Thus, we compute an arbitrary temporal (s, z)-path
(Line 4) and branch over all visited vertices of that temporal (s, z)-path (Line 9) until we

10



Algorithm 1: The algorithm behind Lemma 4.3.
Input: A temporal graph G = (V,E, τ), two distinct vertices s, z ∈ V , and an

integer k ∈ N.
Output: Whether G admits a temporal (s, z)-separator of size at most k.

1 getSeparator(∅,k);
2 output no;
3 function getSeparator(S,k)
4 compute temporal (s, z)-path P in G− S;
5 if there is no temporal (s, z)-path in G− S then
6 output yes;
7 exit;
8 else if k > 0 then
9 for v ∈ V (P ) \ {s, z} do

10 getSeparator(S ∪ {v},k − 1);
11 end
12 end

cannot find a temporal (s, z)-path in G−S, in which case the algorithm outputs yes, or until
we already picked k vertices to be in the temporal (s, z)-separator, in which case the algorithm
outputs no. Hence, if the algorithm outputs yes, then S is a temporal (s, z)-separator.

It remains to show that if there is a temporal (s, z)-separator in G, then the algorithm
outputs yes. We call a tuple (S′, k′) a partial solution if there is a temporal (s, z)-separator
S of size k such that S′ ⊆ S and k′ ≥ k − |S′|. Note that (∅, k) is a trivial partial solution.
Now assume getSeparator is called with a partial solution (S′, k′), then we have that either
S′ is already a temporal (s, z)-separator in which case the algorithm outputs yes, or there is
a temporal (s, z)-path P in G− S′ and a temporal (s, z)-separator S such that S′ ⊆ S. It is
clear that S ∩ V (P ) 6= ∅, let v ∈ S ∩ V (P ). At some point the algorithm chooses the vertex v
in the for-loop in Line 9 and thus invokes a recursive call with (S′∪{v}, k′−1). It is clear that
(S′ ∪ {v}) ⊆ S, we additionally have that k′− 1 ≥ k− |S′ ∪ {v}| since v /∈ S′. Hence, we have
that (S′ ∪ {v}, k′ − 1) is a partial solution. Furthermore, we have that |S′| < |S′ ∪ {v}|. It is
easy to see that if there is a partial solution (S?, k?) with |S?| = k, then S? is a temporal (s, z)-
separator. This implies that the algorithm eventually finds a temporal (s, z)-separator if one
exists and hence is correct.

From Lemma 2.2, we know that we can perform the computation in Line 4 in O(|E|)
time. Now, we upper-bound the size of the search tree in which each node is a call of the
getSeparator() function. We can upper-bound the maximum depth of the search tree by k
as in each recursive call we decrease k by one, until k = 0. Furthermore, a temporal (s, z)-
path of length at most ` visits at most ` − 1 vertices different from s and z. Thus we can
upper-bound the running time of Algorithm 1 by O(`k · |E|).

From Lemma 4.3 we can derive that Temporal (s, z)-Separation is linear-time solvable
on temporal graph classes where the underlying graph has a constant vertex cover number.3

3The vertex cover number of a graph is the size of the smallest vertex subset that intersects all edges of the
graph.
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Corollary 4.4. Temporal (s, z)-Separation can be solved in O((2 · vc)vc · |E|) time, and
thus is fixed-parameter tractable when parameterized by the vertex cover number vc of the
underlying graph.

Proof. Let I := (G = (V,E, τ), s, z, k) be an instance of Temporal (s, z)-Separation and
vc be the vertex cover number of the underlying graph. We prove this in two steps. We first
show that the maximum length ` of a temporal (s, z)-path is upper-bounded by 2 · vc, and
then we show that k can be upper-bounded by vc.

Since at least one endpoint of each edge of the underlying graph G↓ = (V,E↓) must be in
the vertex cover, the maximum length of a path in G↓, and hence the maximum length of a
temporal (s, z)-path, is at most 2 · vc.

Without loss of generality we assume that there is no temporal (s, z)-path P of length two,
because the vertex v ∈ V (P ) \ {s, z} must be contained in every temporal (s, z)-separator.
We can find such a temporal (s, z)-path by restricting the breadth-first search of Lemma 2.2
such that it explores only vertices which are reachable by a path which contains at most two
non-column edges in the static expansion. Let V ′ ⊆ V be a vertex cover of size at most vc
for G↓. The graph G↓ − (V ′ \ {s, z}) does not contain any (s, z)-paths of length greater than
two because all remaining edges are incident with s or z. By our assumption, we know that
neither of these (s, z)-paths correspond to a temporal (s, z)-path in G. Hence, k < vc or I
is a yes-instance. It is well-known that if G↓ admits a vertex cover of size vc, then we can
compute one in O(2vc · |E↓|) time [12]. The application of Lemma 4.3 completes the proof.

Another graph parameter which upper-bounds the maximum length of an (s, z)-path in
the underlying graph is the tree-depth of the underlying graph. First, we provide a formal
definition of tree-depth. For more details, we refer to Nešetřil and de Mendez [28].

Definition 4.5. The tree-depth for graph G with connected components G1, G2, . . . , Gp is
recursively defined by:

td(G) :=


1 if G has only one vertex,
maxi∈[p] td(Gi) if G is not connected, and
1 + minv∈V (G) td(G− {v}) if G is connected.

Corollary 4.6. Temporal (s, z)-Separation is solvable in O(2td(G↓)·k · |E|) time, and thus
is fixed-parameter tractable when parameterized by k + td(G↓), where k is the solution size.

Proof of Corollary 4.6. The tree-depth of a graph G is bounded by log2(h) ≤ td(G) [28,
Lemma 17.2], where h denotes the height of a depth-first search tree of G. It follows that
h ≤ 2td(G) and hence, all paths in G are of length at most 2td(G). Then, application of
Lemma 4.3 completes the proof.

One of the tools from the repertoire for designing fixed-parameter algorithms for (static)
graph problems are tree decompositions [12, 14, 17, 29]. A tree decomposition is a mapping of
a graph into a related tree-like structure. For many graph problems this tree-like structure can
be used to formulate a bottom-up dynamic program that starts at the leaves and ends at the
root of the tree decomposition. Indeed, if we parameterize by the treewidth of the underlying
graph tw(G↓), then we obtain an XP-algorithm by dynamic programming. Furhtermore, if
we add the maximum label τ to the parameter, then we obtain fixed-parameter tractability
when parameterized by tw(G↓) + τ .
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Figure 4: The idea for the dynamic program from Theorem 4.7 for a temporal graph G. Vertices in
S form the temporal (s, z)-separator, vertices in Z are not reachable from s in G− S, and vertices in
At are not reachable from s in G− S before time t.

Theorem 4.7. For a given tree decomposition of the underlying graph, one can solve Tempo-
ral (s, z)-Separation in O((τ+2)tw(G↓)+2 ·tw(G↓) · |V | · |E|) time, where τ is the maximum
time label.

Theorem 4.7 is proved by constructing a dynamic program which is based on the fact that for
each vertex v ∈ V \{s} in a temporal graph G = (V,E, τ) there is a point of time t ∈ [τ ] such
that v cannot be reached from s ∈ V before time t. In particular, we guess a partition V =
A1 ] A2 ] . . . ] Aτ ] S ] Z such that (i) S is the temporal (s, z)-separator, (ii) in G − S no
vertex contained in Z is reachable from s, and (iii) no vertex v ∈ At can be reached from s
before time step t, where t ∈ [τ ]. See Figure 4 for an illustrative example. Due to its length,
the formal proof of Theorem 4.7 is deferred to A.

Note that this result implies that Temporal (s, z)-Separation is fixed-parameter tractable
when parameterized by tw(G↓) + τ .

It remains open whether Temporal (s, z)-Separation is fixed-parameter tractable when
parameterized by tw(G↓) or by k + tw(G↓).

5 Temporal Restrictions

In Sections 3 and 4 we considered restrictions on the layers and the underlying graph. Impor-
tantly, these restrictions do not cover essential temporal aspects of a temporal graph, that is,
any reordering of the layers yields a different temporal graph obeying the same restrictions.
In this section, we study temporal graph classes whose definitions do rely on the order of the
layers. Herein, we study monotone, periodic, consecutively connected, and steady temporal
graphs.

Note that the properties monotone, periodic, and consecutively connected yield quite spe-
cific temporal graph classes [11]. Unfortunately, even on these specific temporal graph classes,
except for trivial cases, we obtain hardness by straight-forward arguments. We refer to Table 1
for an overview on our results.

Monotone temporal graphs. Intuitively, a temporal graph is p-monotone if it can be
decomposed into p time intervals in each of which the layers are ordered by inclusion.

Definition 5.1. A temporal graph G = (V,E, τ) is p-monotone if p ∈ N is the smallest
number such that there are 1 = i1 < i2 < . . . < ip+1 = τ such that for all ` ∈ [p]

• Ej ⊆ Ej+1 for all i` ≤ j < i`+1, or
• Ej ⊇ Ej+1 for all i` ≤ j < i`+1

13



Table 1: Summary of the results of Section 5, where τ denotes the maximum time label and r the
number of periods in G.

Temporal (s, z)-Separation

polynomial-time NP-hard

p-monotone temporal graphs p = 1 p ≥ 2

p-periodic temporal graphs p = 1, or r ≥ n p ≥ 2

T -interval connected temporal graphs — T ≥ 1

λ-steady temporal graphs λ = 0 or (λ, τ const.) λ ≥ 1

holds.

Khodaverdian et al. [21] call a temporal graph monotone if whenever an edge is contained
in a layer, this edge is contained in all succeeding layers. Their motivation is based on tem-
poral graphs that model activation of proteins or, more generally, activation by connected
components. Note that their definition of monotone temporal graphs is equivalent to our
definition of 1-monotone temporal graphs where each layer is a subgraph of its successor.

If a temporal graph G has a layer Gi = G↓, then Temporal (s, z)-Separation can
trivially be solved by finding an (s, z)-separator in Gi. In that case we call G grounded.
Therefore, a straightforward application of the folklore Ford-Fulkerson algorithm gives the
following:

Observation 5.2. Temporal (s, z)-Separation is solvable in O(k · |E|) time on grounded
temporal graphs, where k is the solution size and |E| the number of time-edges.

Note that 1-monotone temporal graphs are always grounded. However, the situation
changes already when the temporal graph is 2-monotone but not grounded. To see that,
first note that one can make every temporal graph τ -monotone by simply adding edge-free
layers between any two consecutive layers, formally:

Observation 5.3. There is a polynomial-time many-one reduction that maps any instance
(G = (V,E, τ), s, z, k) of Temporal (s, z)-Separation to an equivalent instance (G′ :=
(V,E′, 2τ − 1), s, z, k) such that for all i ∈ [τ ] it holds that E2i−1(G

′) = Ei(G) and for
all i ∈ [τ − 1] it holds that E2i(G

′) = ∅.

As Temporal (s, z)-Separation is already NP-complete for τ = 2 [31], this yields the
following.

Observation 5.4. For all p ≥ 2, Temporal (s, z)-Separation on p-monotone temporal
graphs is NP-complete.

Periodic temporal graphs. In several real-world scenarios one observes periodicity; in-
deed, whenever one observes mobile entities with periodic movements [11], such as satellites
or (scheduled) public transport, over longer time periods, periodic patterns appear. Such
models motivate the following class of temporal graphs.

Definition 5.5. A temporal graph G = (V,E, τ) is p-periodic if p ∈ N is the smallest number
such that G = G′

r for some G′ = (V,E′, p) and r is called the number of periods.
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Different notions of periodic temporal graphs exist in the literature. Flocchini et al. [16]
consider periodic temporal graphs obtained from “carriers”, that is, a set of strict temporal
paths define a network. Liu and Wu [23] consider delay-tolerant networks where vertices have
some cyclic movement pattern and get connected when they are in reach: if the time steps
are large enough, then periodicity is observed. In both cases, the smallest common multiple
of the time spans of the entities define the length of a period. Casteigts et al. [11, Class 8]
define periodic temporal graphs by periodicity of edges, that is, for all edges e, time steps t,
and c ∈ N, edge e is present at time step t if and only if e is present at time step t + c · p,
where p is the periodicity. They require the underlying graph to be connected, but they do
not require minimality on the periodicity.

We know that Temporal (s, z)-Separation is NP-complete on 2-periodic temporal
graphs [31]. Contrarily, on 1-periodic temporal graphs, Temporal (s, z)-Separation col-
lapses to (s, z)-Separation in the underlying graph. Surprisingly, if the number of periods
is large enough, then the problem becomes polynomial-time solvable.

Let P be an (s, z)-path of length ` in the underlying graph G↓ of the temporal graph G =
(V,E, τ). A sequence P ′ =

(
(e1, t1), (e2, t2), . . . , (e`, t`)

)
of ` time-edges from E is a realization

of P (P ′ ' P ) if
(
e1, e2, . . . , e`

)
is P . Note, that the sequence of labels of P ′ is not necessarily

non-decreasing. Intuitively, we want measure how many non-decreasing points a realization
of P must have. The distance to temporality of P in G is minP ′'P |fP ′ | − 1, where |fP ′ | is
the number of monotonically increasing intervals of the function fP ′ : [`] → [τ ], fP ′(x) := tx
where tx is the label of the x-th time-edge of P ′. Furthermore, the distance to temporality
from s to z in G is the maximum distance to temporality over all (s, z)-paths in G↓.

Lemma 5.6. Let G = G′
r be a p-periodic temporal graph such that the number of periods r is

at least the distance to temporality from s to z in G′. Then Temporal (s, z)-Separation
is solvable in O(k · |E|) time, where k is the solution size and |E| the number of time-edges.

Proof. Let G = G′
r be a p-periodic temporal graph such that the number of periods r is at

least the distance to temporality from s to z in G′. Then every (s, z)-path in G↓ forms a
temporal (s, z)-path in G. Hence, we can compute a minimum (s, z)-separator in G↓, by k
rounds of the Ford-Fulkerson algorithm, to solve Temporal (s, z)-Separation.

Observe that the distance to temporality from s to z is two in the temporal graph from
the reduction of Zschoche et al. [31] for maximum label τ = 2. Thus Temporal (s, z)-Sep-
aration is NP-complete, even if the input temporal graph G = G′

r is p-periodic and the
number of periods r is one less than the distance to temporality from s to z in G′.

However, the distance to temporality is clearly upper-bounded by the number of vertices.
Hence, we obtain the following.

Corollary 5.7. Let G = (V,E, τ) be a p-periodic temporal graph. If the number of periods r ≥
|V |, then Temporal (s, z)-Separation is solvable in O(k · |E|) time, where k is the solution
size and |E| the number of time-edges.

Interval-connected temporal graphs. Kuhn et al. [22, Definition 2.1] introduced the
following class of temporal graphs.

Definition 5.8. A temporal graph G = (V,E, τ) is T -interval connected for T ≥ 1 if for
every t ∈ [τ − T + 1] the static graph G := (V,

⋂t+T−1
i=t Ei(G)) is connected.
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Kuhn et al. [22] studied T -interval connected temporal graphs in the context of counting
and token dissemination. Note that temporal graphs where each layer is connected are 1-
interval connected temporal graphs, but are not necessarily T -interval connected for some T ≥
2. On the contrary, for every T -interval connected temporal graph it holds that each layer is
connected.

Observation 5.9. There is a polynomial-time many-one reduction that maps any instance
(G = (V,E, τ), s, z, k) of Temporal (s, z)-Separation to an equivalent instance (G′ =
(V ′,E′, τ), s, z, k + 1) such that G′ is T -interval connected for every T ≥ 1.

Proof. Let instance I = (G = (V,E, τ), s, z, k) of Temporal (s, z)-Separation be given.
Obtain the temporal graph G′ from G by adding a vertex v to G and connect v to all other
vertices in V in each layer of G. Clearly, every temporal (s, z)-separator in G′ contains
vertex v. As G = G′− v, instance (G′, s, z, k+ 1) is equivalent to I. Moreover, for any T ≥ 1
and t ∈ [τ − T + 1] the graph G := (V,

⋂t+T−1
i=t Ei(G)) is a supergraph of the star graph with

center v and set V of leaves.

Steady temporal graphs. When observing a network over time with high resolution, we
expect evolutionary instead of revolutionary changes in each time step. For instance, observing
any contact network per second, we do not expect many contacts to appear in the same second.
More generally, in several real-world scenarios we do not expect big changes from one time
step to the other. This assumption motivates the following class of temporal graphs.

Definition 5.10. A temporal graph G = (V,E, τ) is λ-steady if λ ∈ N is the smallest
number such that for each point in time t ∈ [τ − 1] the size of the symmetric difference of two
consecutive edge sets |Et4Et+1| is at most λ.

To the best of our knowledge, this class has not been considered in the literature.
The following shows that many hardness results for temporal graphs are also valid for

λ-steady temporal graphs, even if λ = 1.

Proposition 5.11. There is a polynomial-time many-one reduction that maps any instance
(G = (V,E, τ), s, z, k) of Temporal (s, z)-Separation to an equivalent instance (G′ =
(V ′,E′, τ ′), s, z, k) such that G′ is 1-steady.

Proof. Let I = (G = (V,E, τ), s, z, k) be an instance of Temporal (s, z)-Separation.
We define G′ = (V,E′, τ ′) as follows. Intuitively, we slowly construct and subsequently
deconstruct each layer Ei of G. Formally, for each i ∈ [τ ] we write Ei := Ei(G) =:
{(ei,j , i) | j ∈ [|Ei|]} and define an auxiliary temporal graph Gi := (V,Ei, 2 · |Ei|) where
Ei := {(ei,j , t) | j ∈ [|Ei|]∧||Ei| − t| < j}. In particular, we have |E1(Gi)| = 1, E2·|Ei|(Gi) = ∅,
and E|Ei|(Gi) = Ei. Now we construct G′ as G′ := G1 ◦G2 ◦ . . . ◦G[τ ]. Observe that G′

is 1-steady. Furthermore, for any temporal (s, z)-path in G′, there is a temporal (s, z)-path
in G that uses the same vertices and vice versa. Hence Temporal (s, z)-Separation is
equivalent on inputs G and G′.

The reduction of Proposition 5.11 increases the maximum label by a factor depending
on the input size. Indeed, from previous results [31] it follows that for any fixed λ, Tem-
poral (s, z)-Separation on λ-steady temporal graphs is fixed-parameter tractable when
parameterized by τ .
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Corollary 5.12. For any fixed λ we have that Temporal (s, z)-Separation on λ-steady
temporal graphs is fixed-parameter tractable when parameterized by the maximum label τ .

Proof. For a temporal graph G = (V,E, τ), the vertex set W := {v ∈ V | ∃{v, w} ∈
(
⋃τ
i=1Ei) \ (

⋂τ
i=1Ei)} ⊆ V is called the temporal core of G. Zschoche et al. [31] showed

that Temporal (s, z)-Separation is fixed-parameter tractable when parameterized by the
size of the temporal core.

The statement follows directly from the fact that the temporal core of a λ-steady temporal
graph G = (V,E, τ) is upper-bounded by 2 · λ · τ .

6 (Almost) Order-Preserving Temporal Unit Interval Graphs

In this section, we sort of combine aspects studied in Section 4 (restrictions of the underlying
graph) and Section 5 (temporal restrictions). To this end, we focus on temporal graphs where
each layer is a unit interval graph and we further restrict how much the intervals may change
over time. This is a layer-wise restriction with, additionally, a temporal restriction. Recall
from Proposition 3.3 that Temporal (s, z)-Separation remains NP-complete on temporal
graphs where each layer is a unit interval graph, even if the maximum label τ is a small
constant.

Now we show in the following that if there is an ordering on the vertices that matches
the relative positions of the intervals in all layers, then we can solve Temporal (s, z)-Sep-
aration in polynomial time. We then generalize this by introducing a parameter that,
informally speaking, describes how much the interval orderings may change over time, and
show fixed-parameter tractability with respect to the combination of this new parameter and
the maximum label τ .

We call a total ordering <V on a vertex set V compatible with a unit interval graph G =
(V,E) if there are unit intervals [av, av + 1] with av ∈ R for all vertices v ∈ V that induce the
graph G and for all u, v ∈ V with u <V v we have that au ≤ av. Note that for every unit
interval graph there is a total ordering on the vertices that is compatible with it.

Definition 6.1. A temporal graph G = (V,E, τ) is an order-preserving temporal unit interval
graph if G is a temporal unit interval graph and there is a total ordering <V on the vertex
set V that is compatible with every layer Gi.

Given an order-preserving temporal unit interval graph G = (V,E, τ), we denote by <V a
compatible total ordering on V . Let n := |V |, and number the vertices in V =: {v1, v2, . . . , vn}
such that vi <V vj ⇔ i ≤ j. Furthermore, we use the following notation: V<i := {vj | 1 ≤
j < i} and V>i := {vj | n ≥ j > i} and N>

Gt
(vi) := NGt(vi) ∩ V>i. If the ordering <V is clear

from the context, then we refer to vertices as smaller or larger than other vertices to express
that they appear before or after, respectively, in the ordering <V .

Lemma 6.2. Order-preserving temporal unit interval graphs can be recognized in polynomial
time and a compatible vertex ordering for a given order-preserving temporal unit interval graph
can be computed in polynomial time.

Proof. Let G = (V,E, τ) be a temporal graph. Then, due to Looges and Olariu [24, The-
orem 1], we know that G is an order-preserving temporal unit interval graph with vertex
ordering <V if and only if the vertices in of every closed neighborhood NGi [v] := NGi(v)∪{v}
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with v ∈ V of every layer i ∈ [τ ] appear consecutively in the ordering <V . Thus, the problem
can be solved by searching a column ordering of the matrix M ∈ {0, 1}|V |·τ×|V | defined by
M [(i, t), j] = 1 ⇐⇒ vj ∈ NGt [vi] that has the consecutive ones property, a task for which a
linear-time algorithm is known [7].

We now state some useful properties of temporal paths and separators in order-preserving
temporal unit interval graphs. Due to (iii) of the following lemma, we will henceforth assume
without loss of generality that v1 = s and vn = z.

Lemma 6.3. Let G = (V,E, τ) be an order-preserving temporal unit interval graph with
ordering <V .
(i) For all 1 ≤ a ≤ b ≤ τ and for all S ⊆ V we have that G[a:b]−S is also an order-preserving

temporal unit interval graph.
(ii) If for some 1 ≤ i < j ≤ n there is a temporal (vi, vj)-path P in G, then there is

temporal (vi, vj)-path P ′ in G that visits its vertices in the order given by <V .
(iii) Let S ⊆ V be a temporal (vi, vj)-separator in G for some 1 ≤ i < j ≤ n. Then

S′ := S \ (V<i ∪ V>j) is also a temporal (vi, vj)-separator in G.
(iv) A temporal (vi, vj)-separator in G is also a temporal (vi′ , vj′)-separator in G for all

1 ≤ i′ ≤ i < j ≤ j′ ≤ n.
(v) Let S ⊆ V \{s, z} such that vi is the largest vertex reachable from s in G−S. Let t denote

the first time vi is reachable from s in G− S, and let t ≤ t′ ≤ τ . Then N>
Gt′

(vi) ⊆ S.
(vi) Let S1 ⊆ V \ {s, z} such that vi is the largest vertex reachable from s in G[1:t] − S1 for

some t ∈ [τ − 1]. Let S2 ⊆ V \ {s, z} such that vj is the largest vertex reachable from s
in G[t+1:τ ]−S2. If i ≤ j, then S := S1∪S2 is a temporal (s, z)-separator in G such that
there is no vertex reachable from s in G− S that is larger than vj.

(vii) Let S ⊆ V be an inclusion-wise minimal temporal (s, z)-separator in G with the property
that a given vi is the largest vertex that is reachable from s in G − S and let vj be the
smallest vertex that is not in S such that S is also a temporal (s, vj)-separator in G.
Then for all vi <V v <V vj with vi 6= v 6= vj we have that v ∈ S, and we have that
S ∩ V>j = ∅.

Proof. (i): Obvious.
(ii): We prove that there is a temporal (vi, vj)-path P ′ in G that visits its vertices in the
order given by <V and t ≤ t′, where t and t′ denote the first time label in P and in P ′,
respectively. We give an inductive proof over the number of edges in the temporal (vi, vj)-
path P . For the base case, if P has only one edge, then E(P ) = ({vi, vj}, t) for some t ∈
[τ ]. Hence, P ′ := P clearly is the sought temporal path. Now, assume that the statement
holds for all temporal (vi, vj)-paths with at most ` ∈ N edges. For the inductive step, let P
be a temporal (vi, vj)-path with exactly ` + 1 edges. Let vi′ be the last vertex on P such
that i′ ≤ i, and let t ∈ [τ ] be the index of the layer where P contains the edge {vi′ , vx},
where vx is the successor of vi′ on P . Since Gt is a unit interval graph with order <V , the
edge {vi, vx} is present in Gt. Denote by Px the temporal (vx, vj)-subpath of P , starting
at vertex vx. Observe that Px has at most ` edges, and hence there is a path P ′x visiting
its vertices in the order given by <V and starting at some time label t′ ≥ t. Thus, the
path P ′ = ({vi} ∪ V (P ′x), {({vi, vx}, t)} ∪ E(P ′x)), that starts with edge ({vi, vx}, t) and then
follows P ′x, visits its vertices in the order given by <V and starts at time label t being at least
the first time label appearing on the edges of P .
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(iii): Follows directly from (ii).
(iv): Follows directly from (ii).
(v): Suppose not. Then there is a time step t′′ with larger neighborhood and hence there is
a vertex vj ∈ N>

Gt′′
(vi) \ N>

Gt′
(vi). Hence, vj with j > i is reachable from s in G[1:t′′] − S,

contradicting the definition of vi.
(vi): Follows directly from (ii).
(vii): Assume towards a contradiction that there is a vertex v /∈ S with vi <V v <V vj . Then
either v is reachable from s in G− S, which would be a contradiction to vi being the largest
vertex reachable from s in G − S, or v is not reachable from s in G − S, a contradiction to
the assumption that vj is the smallest vertex such that S is also a temporal (s, vj)-separator
in G. Furthermore, S ∩V>j = ∅ follows from the assumption that S is inclusion-wise minimal
and Lemma 6.3(iii).

Now we have the necessary tools to prove that Temporal (s, z)-Separation can be
solved in polynomial time on order-preserving temporal unit interval graphs.

Theorem 6.4. Temporal (s, z)-Separation on order-preserving temporal unit interval
graphs is solvable in O(|V |2 · τ2) time.

Proof. Let G = (V,E, τ) be a given order-preserving temporal unit interval graph and k be a
given upper bound on the temporal separator size. By Lemma 6.2 we can find a total vertex
ordering <V compatible with every layer. Assume that there is no layer with an edge between s
and z. In order to solve the problem, we use the following dynamic programming table T of
size τ × (n− 1). In the table entry T [t, i] we store a minimum temporal (s, z)-separator S for
G[1:t] with the property that there is no vertex reachable from s in G[1:t] − S that is larger
than vi. Let

N (v, t, t′) :=

{{
N>
Gt′′

(v) | t ≤ t′′ ≤ t′
}
, if ∀t ≤ t′′ ≤ t′ : ({v, z}, t′′) /∈ E,

{V \ {s, z}}, otherwise.

Let T be defined in the following way:

T [1, 1] := NG1(s), (1)
T [t, 1] := arg max

S∈N (s,1,t)
|S|, (2)

T [1, i] := arg min
S∈Yi

|S|, where Yi := {T [1, i− 1]} ∪ N (vi, 1, 1), (3)

T [t, i] := arg min
S∈Xt,i

|S|, where (4)

Xt,i :=

{
T [t′, i′] ∪ arg max

S∈N (vi,t′+1,t)
|S|
∣∣∣∣∣ i′ ∈ [i− 1] ∧ t′ ∈ [t− 1]

}

∪ {T [t, i− 1]} ∪
{

arg max
S∈N (vi,1,t)

|S|
}
.

We decide whether we face a yes-instance by checking if there is an i ∈ [n−1] such that |T [τ, i]| ≤
k.
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It is easy to see that each table entry can be computed in O(|V | · τ) time and the table
has size |V | · τ . Hence, the algorithm has the claimed polynomial running time.

Correctness. We prove by induction on both dimensions of T that T [t, i] is a minimum
temporal (s, z)-separator S for G[1:t] with the property that there is no vertex reachable from s
in G[1:t]−S that is larger than vi with respect to <V . First, observe that Lemma 6.3(v) implies
that T [1, 1] and T [t, 1] are correctly filled in Equations (1) and (2). Hence, the base for our
induction is correct.

We proceed with the proof of the cases specified by Equations (3) and (4) in two steps.
First we show that for all T [t, i] with t ≥ 1 and i > 1, we have that T [t, i] is a temporal (s, z)-
separator S for G[1:t] with the property that there is no vertex reachable from s in G[1:t] − S
that is larger than vi. Then, in a second step, we show that said separator is minimum.

It is easy to check that if t = 1, then for all i ∈ [n − 1] we have that T [1, i] (as specified
in Equation (3)) is a temporal (s, z)-separator with the desired properties. Next, we consider
the case that t, i > 1. We show that every set in Xt,i is a temporal (s, z)-separator with the
desired properties. By induction we know that this holds for T [t, i − 1]. It is also easy to
check that it holds for S′ := arg maxS∈N (vi,1,t) |S|. For arbitrary i′ ∈ [i − 1] and t′ ∈ [t − 1]
(Equation (4)) it is also straightforward to see that S′ := T [t′, i′]∪arg maxS∈N (vi,t′+1,t) |S| has
the desired properties. By induction, T [t′, i′] contains a temporal (s, z)-separator for G[1:t′]

with the property that there is no vertex reachable from s in G[1:t′] − T [t′, i′] that is larger
than vi′ . The set S′′ := arg maxS∈N (vi,t′+1,t) |S| either equals V \ {s, z}, in which case we
clearly have a separator with the desired properties, or it forms a temporal (s, z)-separator
for G[t′+1:t] with the property that there is no vertex reachable from s in G[t′+1:t] − S′ that
is larger than vi. Then by Lemma 6.3(vi) we get that we have a separator with the desired
properties.

Now we show that for all t ≥ 1 and i > 1, the separator contained in T [t, i] is of minimum
size. Let S? ⊆ V \ {s, z} be a minimum set of vertices such that in G[1:t] − S? the vertex vj ,
j ≤ i, is the largest reachable vertex from s. If j < i, then by induction hypothesis (both for
t = 1 and t > 1) we have that |S?| ≥ |T [t, i− 1]| and hence |T [t, i]| ≤ |S?|.

We continue with the case that j = i. If vi is reachable in G[1:1] − S? from s, then
by Lemma 6.3(v) we know that N>

Gt′
(vi) ⊆ S? for all t′ ∈ [t]. As S? is minimum, it holds

that |S?| = maxS∈N (vi,1,t) |S|, and we have that arg maxS∈N (vi,1,t) |S| ∈ Xt,i (if t = 1, then
arg maxS∈N (vi,1,t) |S| ∈ Yi) which implies that |T [t, i]| ≤ |S?|.

Now assume that t > 1 and vi is not reachable from s in G[1:1] − S?. Let t′ be the largest
time-step in which vi is not reachable from s in G[1:t′]−S?, and let i′ < i be the largest index
such that vi′ is reachable from s inG[1:t′]−S?. By Lemma 6.3(v), we know that S′′ := N>

Gt′′
(vi),

where t′ + 1 ≤ t′′ ≤ t achieves the maximum cardinality, is contained in S?. Let S′ be the
smallest subset of S? such that in G[1:t′] − S′ the vertex vi′ is the largest reachable vertex
from s. By induction hypothesis, we have that |S′| ≥ |T [t′, i′]|. From Lemma 6.3(vii) it
follows that S′ ∩ S′′ = ∅. Hence, because S? is minimum, we can write S? = S′ ] S′′. Hence,
we have

|S| = |S′|+ |S′′| ≥ |T [t′, i′]|+ |N>
Gt′′

(vi)| ≥ min
S∈Xt,i

|S| = |T [t, i]|,

where the second inequality follows from the fact that T [t′, i′] ∪N>
Gt′′

(vi) ∈ Xt,i.

Next we show how to use the derived polynomial-time algorithm as a basis for a distance-
to-triviality parameterization [10, 18]. For a temporal unit interval graph we introduce a
parameter κ that bounds how much the compatible vertex orderings of two consecutive layers
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of a temporal unit interval graph differ. We use the Kendall tau distance [20] to measure
the similarity of vertex orderings. The Kendall tau distance K is a metric that counts the
number of pairwise disagreements between two total orderings; it is also known as “bubble
sort distance”. We call the parameter κ the shuffle number of a temporal unit interval graph
and define it as follows.

Definition 6.5 (Shuffle Number). Given a temporal unit interval graph G = (V,E, τ), its
shuffle number κ is the smallest integer such that there are vertex orderings <1

V , <
2
V , . . . , <

τ
V

with the property that <tV is compatible with layer Gt for all t ∈ [τ ], and the orderings of any
two consecutive layers have Kendall tau distance at most κ, that is, for all t ∈ [τ − 1] we have
that K(<tV , <

t+1
V ) ≤ κ. We say that the vertex orderings <1

V , <
2
V , . . . , <

τ
V witness the shuffle

number of G.

Clearly for order-preserving temporal unit interval graphs we have that κ = 0 and it is easy
to observe (with the help of Lemma 3.1) that we get NP-completeness for κ = 1. However, if we
consider the parameter combination (κ+ τ) the problem becomes fixed-parameter tractable.

Theorem 6.6. Given the a temporal unit interval graph and a vertex orderings that wit-
ness its shuffle number κ, Temporal (s, z)-Separation is fixed-parameter tractable when
parameterized by κ+ τ , where τ is the maximum label.

Proof. Let G = (V,E, τ) be a temporal unit interval graph given as input together with
vertex orderings <1

V , <
2
V , . . . , <

τ
V , and let k be the size bound on the separator. The algorithm

proceeds as follows. We first “mark” all vertices u, v with the property that for some t ∈ [τ−1]
we have that u <tV v and v <t+1

V u, that is, their relative order is flipped at some point in time.
We also always mark s and z. Let M be the set of marked vertices. More formally, let M be
the largest subset of V that contains s and z with the property that for all u ∈ M \ {s, z}
there is a v ∈ M and a t ∈ [τ − 1] such that either u <tV v and v <t+1

V u, or v <tV u and
u <t+1

V v.
Note that we can compute M in polynomial time when given the vertex orderings using

bubble sort and we have that |M | ≤ 2 · κ · τ + 2. If M = V , then we can solve the problem
in the desired running time by trying out every possible separator. From now on we assume
that M 6= V .

Next, we define two partitions, one for the vertex set M and one for the vertex set V ′ :=
V \M . Intuitively, the partition of V ′ describes which parts of the orderings stay the same
over the whole lifetime of the temporal graph, or in other words, which parts of the graph
are order-preserving. The partition of M describes which vertices lie between parts of the
temporal graphs that are order-preserving.

We define a partition of the vertices in M = M1 ]M2 ] . . . ]Mp as follows: Let V =
{v1, v2, . . . , vn} be the vertex ordering given by <1

V (that is, vi <1
V vj if and only if i < j).

• We have that s ∈M1 and z ∈Mp.
• If vi ∈ M and vi+1 ∈ M for some i ∈ [n − 1], then vi ∈ Mj and vi+1 ∈ Mj for some
j ∈ [p].

• If vi ∈Mj and vi′ ∈Mj with i < i′ for some j ∈ [p], then for all i < i? < i′ we have that
vi? ∈Mj .

• For all j ∈ [p] we have that Mj 6= ∅, and if vi in Mj and vi′ in Mj+1 for some j ∈ [p−1],
then we have that i < i′.

Analogously, we define a partition of the remaining vertices V ′ = V ′1 ] V ′2 ] . . . ] V ′q in the
following way:
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• If vi ∈ V ′ and vi+1 ∈ V ′ for some i ∈ [n−1], then vi ∈ V ′j and vi+1 ∈ V ′j for some j ∈ [q].
• If vi ∈ V ′j and vi′ ∈ V ′j with i < i′ for some j ∈ [q], then for all i < i? < i′ we have that
vi? ∈ V ′j .

• For all j ∈ [q] we have that V ′j 6= ∅, and if vi in V ′j and vi′ in V ′j+1 for some j ∈ [q − 1],
then we have that i < i′.

We can easily compute both partitions by iterating over all vertices in V in the order given
by <1

V and checking whether a vertex is contained in M . It is also easy to check that q ≤
p+ 1 ≤ κ · τ + 3 ≤ n, since for all 1 < j < p we have that |Mj | ≥ 2.

Note that any vertex ordering <tV with t ∈ [τ ] defines the same partitions.
Now we are ready to construct a separator S. First we guess the set MS := S ∩M . Then

for each 1 < j ≤ p we guess the earliest time aj a temporal path starting from s should be
able to reach a vertex in the set Mj in G−S or we set aj := τ + 1 if no temporal path from s
should be able to reach a vertex in Mj in G − S. For each 1 ≤ j < p we guess the earliest
time dj > aj a temporal path from s should be able to reach a vertex in V ′j in G − S or, in
other words, leave the set Mj , or we set dj := τ + 1 if no temporal path from s should be able
to reach a vertex in V ′j in G− S.

Now we create the following instances of Temporal (s, z)-Separation on order-preserving
temporal unit interval graphs: For each j ∈ [q] we do the following: If dj < aj+1, then we
create an order-preserving temporal unit interval graph by taking the graph G[dj :aj+1−1][V

′
j ]

and adding two new vertices sj and zj . We further add the time-edge ({sj , u}, t) to the tem-
poral graph if dj ≤ t ≤ aj+1− 1 and ({u′, u}, t) ∈ E for some u′ ∈Mj \MS . We add the edge
({zj , u}, t) to the graph if dj ≤ t ≤ aj+1 − 1 and ({u′, u}, t) ∈ E for some u′ ∈ Mj+1 \MS .
We call the constructed graph Gj . Intuitively, we merge all vertices in Mj \MS to a vertex sj
and all vertices in Mj+1 \MS to a vertex zj . It is easy to check that Gj is an order-preserving
temporal unit interval graph. Now we solve the optimization variant of Temporal (s, z)-
Separation on (Gj , sj , zj) using Theorem 6.44. Let Sj be the solution, that is, a minimum
temporal (sj , zj)-separator for Gj . If there is no valid solution or if dj ≥ aj+1, then we
set Sj = ∅.

Finally, we set S =
⋃
j∈[q] Sj ∪MS . If |S| ≤ k and there is no temporal (s, z)-path in

G− S, then we output yes. Otherwise, we output no.
It is easy to check that the algorithm runs in FPT-time with respect to parameter (κ+ τ).

We next prove the correctness of the algorithm.
(⇒): If the algorithm outputs yes, then we face a yes-instance. This is trivially true since

the algorithm does a sanity check as a last step.
(⇐): If we face a yes-instance, then there is a temporal (s, z)-separator S? with |S?| ≤ k

for G. We claim that in this case, our algorithm outputs yes. Since we try out all possible sets
MS we can assume that there is a branch of our algorithm where we have that MS = M ∩S?.
Similarly, we can assume that we are in a branch where all values aj and dj for j ∈ [q] are
“correct”, that is, they are the largest numbers with the property that no vertex v ∈ Mj is
reachable from s in G−S? earlier than aj and no vertex u ∈ V ′j is reachable from s in G−S?
earlier than dj .

Then we can show that S =
⋃
j∈[q] Sj ∪MS is a temporal (s, z)-separator and |S| ≤ |S?|:

We first check that S is a temporal (s, z)-separator. Since M ∩ S? = M ∩ S we know that for
each part Mj with 1 < j < p we have that a temporal path from s that arrives at a vertex in
Mj no earlier than aj cannot arrive at a vertex in V ′j earlier than dj in G− S. Furthermore,

4Note that the corresponding algorithm can easily be modified to output a solution.
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no temporal path from s can arrive at a vertex in V ′1 earlier than d1 in G−S and no temporal
path from s that arrives at a vertex in Mp at time ap or later can reach z in G− S. The sets
Sj are chosen in a way that ensures that a temporal path from s that does not arrive at any
vertex in V ′j earlier than dj cannot reach a vertex in Mj+1 earlier than aj+1 in G − Sj and
hence also in G−S. We can conclude that S is a temporal (s, z)-separator for G. Now assume
for contradiction that |S| > |S?|. Then there is a set Sj such that |Sj | > |V ′j ∩ S?|. This is
a contradiction to the fact that Sj is a minimum temporal (sj , zj)-separator for (Gj , sj , zj)
since V ′j ∩ S? is also a temporal (sj , zj)-separator for (Gj , sj , zj) since otherwise there would
be a temporal path from s that arrives at a vertex in Mj+1 earlier than aj+1 in G− S?. This
completes the correctness proof.

Running time. There are 2|M | possible guesses for MS and then a total of τ2(p−1) possible
guesses for the ai and di values. The polynomial part of the running time is q · O(|V |2 · τ2).
Together with the bounds we know for q, p, and |M | we get a running time upper bound of
O((4τ)τ ·κ · (κ+ τ) · |V |2 · τ2).

We remark that is remains an open question how to compute the shuffle number of a given
temporal unit interval graph and a set of vertex orderings that witness the shuffle number.
We conjecture that deciding whether a temporal unit interval graph has shuffle number κ = 1
is already NP-hard.

7 Conclusion

We studied Temporal (s, z)-Separation on different temporal graph classes—with struc-
tural and temporal restrictions on temporal graph models. We proved Temporal (s, z)-
Separation to remain NP-complete on the majority of the considered classes of restricted
temporal graphs. Polynomial-time solvability was achieved for temporal graphs where the un-
derlying graph has bounded treewidth, on grounded temporal graphs, temporal graphs with
many periods, and temporal graphs where each layer is a unit interval graph with respect to
the same vertex ordering.

Our results exemplify that many notions of temporal graph classes that are currently
considered in the literature do not impose useful restrictions on temporal graphs when dealing
with separation problems. We introduced the class of order-preserving temporal unit interval
graphs which is more restrictive than just requiring the layers to fall into a specific graphs
class. However, also this notion does not capture temporal aspects (that is, it is invariant under
reordering of layers). We defined a distance measure for temporal unit interval graph to order-
preserving temporal unit interval graph, the shuffle number of a temporal unit interval graph,
and showed that this is a useful restriction for Temporal (s, z)-Separation. Exploring
further, more sophisticated structural restrictions of temporal graphs, whose definitions may
rely on global properties and on temporal aspects, is of particular interest when asking for
computationally tractable cases of Temporal (s, z)-Separation.

We further briefly discuss Strict Temporal (s, z)-Separation, the main difference to
Temporal (s, z)-Separation being that we are looking for a strict temporal (s, z)-separator
that removes all strict temporal (s, z)-paths from the input graph. A temporal path is strict
if the time-edges of the path have strictly increasing time labels. In certain circumstances
Strict Temporal (s, z)-Separation and Temporal (s, z)-Separation can behave very
differently with respect to their computational complexity [31], nevertheless we believe that
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most of our results can be adapted to the strict case. More specifically, we believe that the re-
sults presented in Section 3 and Section 4 all carry over, however the algorithms of course need
suitable adjustments. For our results on temporal restrictions (Section 5) it is easy to show
that most of the polynomial-time solvable cases become NP-hard in the strict case. This follows
from the fact that Strict Temporal (s, z)-Separation is NP-complete even if all layers
are the same, or in other words, all edges appear either in all time steps or never [31]. We also
believe that the algorithm of Section 6 concerning temporal unit interval graph can be adapted
to the strict case.
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A Proof of Theorem 4.7

Theorem 4.7. For a given tree decomposition of the underlying graph, one can solve Tempo-
ral (s, z)-Separation in O((τ+2)tw(G↓)+2 ·tw(G↓) · |V | · |E|) time, where τ is the maximum
time label.

We prove Theorem 4.7 by introducing a dynamic program which is executed on a nice tree
decomposition.

Definition A.1. A tree decomposition T := (T, (Bi)i∈V (T )) of a graph G is a nice tree
decomposition if T is rooted, every node of the tree T has at most two children nodes, and for
each node i ∈ V (T ) the following conditions are satisfied:
(i) If i has two children nodes k, j ∈ V (T ) in T , then Bi = Bk = Bj . Node i is called a join

node.
(ii) If i has one child node j, then one of the following conditions must hold:

(a) Bi = Bj ∪ {v}. Node i is called an introduce node of v.
(b) Bi = Bj \ {v}. Node i is called a forget node of v.

(iii) If i is a leaf in T , then |Bi| = 1. Node i is called a leaf node.
For the node i ∈ V (T ), the tree Ti denotes the subtree of T rooted at i. The set B(Ti) :=⋃
j∈V (Ti)

Bj is the union of all bags of Ti.

Note that a tree decomposition of width O(tw(G)) for a given graph G with n vertices
can be computed in 2O(tw(G)) · n time [6] and can be turned into a nice tree decomposition in
polynomial-time [12, Lemma 7.4].

We are going to color V with τ + 2 colors 〈A[1:τ ], S, Z〉. If a vertex v ∈ V has color Y ∈
{A[1:τ ], S, Z}, then we denote this by v ∈ Y . Thus, formally each color forms a subset of the
vertices. The meaning of colors is that if v ∈ S, then v is in the temporal (s, z)-separator;
if v ∈ Z, then v is not reachable from s in G − S; and if v ∈ Ai, then v cannot be reached
before time point i from s.

Definition A.2. We say that 〈A[1:τ ], S, Z〉 is a coloring of X ⊆ V (G) if X = A1 ]A2 ] · · · ]
Aτ ]S ]Z. A coloring 〈A[1:τ ], S, Z〉 of X ⊆ V (G) is valid if (i) s ∈ A1, (ii) z ∈ Z, and (iii) for
all a ∈ Ai, a′ ∈ Aj , and b ∈ Z

• there is no temporal (a, b)-path with departure time at least i in G[X]− S, and
• there is no temporal (a, a′)-path with departure time at least i and arrival time at

most j − 1 in G[X]− S.
For Y ⊇ X, a valid coloring 〈A′[1:τ ], S′, Z ′〉 of Y is called an extension of 〈A[1:τ ], S, Z〉

if S ⊆ S′, Z ⊆ Z ′, and Ai ⊆ A′i for all i ∈ [τ ]. If such an extension exists, 〈A[1:τ ], S, Z〉 is said
to be extendable to Y .

Lemma A.3. Let G = (V,E, τ) be a temporal graph, and s, z ∈ V . There is a valid color-
ing 〈A[1:τ ], S, Z〉 of V if and only if S is a temporal (s, z)-separator in G.

Proof. ⇒: Let 〈A[1:τ ], S, Z〉 be a valid coloring of V such that |S| = k. Vertex s has color A1

and vertex z has color Z. We know that there is no temporal (s, z)-path in G[V ] − S =
G− S, otherwise condition (iii) of the definition of a valid coloring is violated. Hence, S is a
temporal (s, z)-separator of size k in G.
⇐: Let S be a given temporal (s, z)-separator of size k inG. Let A ⊆ V (G) contain all vertices
in G− S that are reachable from s. We construct a valid coloring as follows. Assign color Z
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to all vertices in V (G) \ (A∪S). Note that z ∈ Z. For each v ∈ A we set v ∈ At where t ∈ [τ ]
is the earliest point of time at which v can be reached from s. In particular s ∈ A1. As a
consequence, there is no w ∈ At′ such that there is a temporal (w, v)-path with departure
time at least t′ and arrival time at most t − 1, as otherwise there is a temporal (s, v)-path
with arrival time at most t − 1 contradicting that t is the earliest time point in which v is
reachable from s. Finally, we can observe that there are no a ∈ Ai and b ∈ Z such that there
is a temporal (a, b)-path with departure time at least i, because a can be reached at time
point i from s and all vertices of color Z are not reachable in G− S. Hence, 〈A[1:τ ], S, Z〉 is a
valid coloring of V .

Let G = (V,E, τ) be a temporal graph, s, z ∈ V , and T = (T, (Bi)i∈V (T )) be a nice tree
decomposition of G↓ of width tw(G↓). We add s and z to every bag of T . Thus, T is of width
at most tw(G↓) + 2.

In the following, we give a dynamic program on T . For each node x in T we compute a
table Dx which stores for each coloring 〈A[1:τ ], S, Z〉 of Bx the minimum size of S′ over all
extensions 〈A′[1:τ ], S′, Z ′〉 of 〈A[1:τ ], S, Z〉 to B(Tx):

Dx[A[1:τ ], S, Z] := min

{
∞,
∣∣S′∣∣ ∣∣∣∣ 〈A′[1:τ ], S′, Z ′〉 is an extension

of 〈A[1:τ ], S, Z〉 to B(Tx)

}
(5)

Let r ∈ V (T ) be the root of T . If Dr[A[1:τ ], S, Z] = k′ < ∞, then the coloring 〈A[1:τ ], S, Z〉
of Br is extendable to B(Tr) = V (G) and there is a temporal (s, z)-separator of size k′ in G.
Hence, the input instance (G, s, z, k) is a yes-instance if and only if k′ ≤ k.

The dynamic program first computes the tables for all leaf nodes of T and then, in a
“bottom-up” manner, all tables of nodes of which all child nodes are already computed. The
computation of Dx, x ∈ V (T ), depends on the type of x, that is, whether x is a leaf, introduce,
forget, or join node.

Leaf node. Let x ∈ V (T ) be a leaf node of T . Thus, Bx = {s, v, z}. We test each coloring
of Bx and set Dx[A[1:τ ], S, Z] = ∞ if s 6∈ A1 or z 6∈ Z, because the coloring cannot be valid.
Assume s ∈ A1 or z ∈ Z. We distinguish three cases.
Case 1: If v ∈ S, then this is a valid coloring. We set Dx[A[1:τ ], S, Z] := 1.
Case 2: If v ∈ Z, then we set Dx[A[1:τ ], S, Z] := ∞ if there is a ({s, v}, t) ∈ E(G[Bx]), and

Dx[A[1:τ ], S, Z] := 0 otherwise.
Case 3: If v ∈ Ai, i ∈ [τ ], then we set Dx[A[1:τ ], S, Z] :=∞ if there is a ({s, v}, t) ∈ E(G[Bx])

with t < i or if there is a ({v, z}, t) ∈ E(G[Bx]) with i ≤ t, and Dx[A[1:τ ], S, Z] := 0
otherwise.

Lemma A.4. Let G be a temporal graph and T be a tree decomposition of G as described
above, x ∈ V (T ) be a leaf node, and 〈A[1:τ ], S, Z〉 be a coloring of Bx. Then the following
holds:
(i) Dx[A[1:τ ], S, Z] <∞ if and only if 〈A[1:τ ], S, Z〉 is a valid coloring of Bx.
(ii) If 〈A[1:τ ], S, Z〉 is a valid coloring of Bx, then Dx[A[1:τ ], S, Z] = |S|.
(iii) The table entry Dx[A[1:τ ], S, Z] can be computed in O(|E|) time .

Proof. We first prove (i).
⇐: Let Dx[A[1:τ ], S, Z] = ∞ There are five cases in which Dx[A[1:τ ], S, Z] is set to ∞. Ei-
ther s 6∈ A1, z 6∈ Z, v ∈ Z and there is a time-edge ({s, v}, t) ∈ E(G[B(Tx)]), or v ∈ Ai and
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there is a time-edge ({s, v}, t) ∈ E(G[B(Tx)]) with t < i or there is a time-edge ({v, z}, t) ∈
E(G[B(Tx)]) with i ≤ t, where i ∈ [τ ]. It follows that 〈A[1:τ ], S, Z〉 is no valid coloring of Bx.
⇒: Let Dx[A[1:τ ], S, Z] < ∞. Note that s must be of color A1 and z must be of color Z.
Observe thatDx[A[1:τ ], S, Z] = 0 orDx[A[1:τ ], S, Z] = 1. Consider the case ofDx[A[1:τ ], S, Z] =
1. Thus, v ∈ S. This implies that G[B(Tx)]− S is time-edgeless and therefore 〈A[1:τ ], S, Z〉 is
a valid coloring of Bx. Next, consider the case of Dx[A[1:τ ], S, Z] = 0. If v ∈ Z, then there is
no time-edge from s to v which means 〈A[1:τ ], S, Z〉 is a valid coloring of Bx. If v ∈ Ai, then
there is no time-edge ({s, v}, t) with t < i and there is no time-edge from ({z, v}, t) with i ≤ t.
In both cases 〈A[1:τ ], S, Z〉 is a valid coloring of Bx.

If 〈A[1:τ ], S, Z〉 is a valid coloring ofBx, thenDx[A[1:τ ], S, Z] = |S| as we setDx[A[1:τ ], S, Z] =
1 if and only if v ∈ S. This proves (ii). Furthermore, we can check by iterating over all time-
edges whether 〈A[1:τ ], S, Z〉 is a valid coloring of Bx This proves (iii), and hence (i)–(iii) hold
true.

Introduce node. Let x ∈ V (T ) be an introduce node of T , y ∈ V (T ) denote its child node,
and Bx \By = {v}. We distinguish three cases.
Case 1: If v ∈ S, then we set Dx[A[1:τ ], S, Z] := Dy[A[1:τ ], S \ {v}, Z] + 1.
Case 2: If v ∈ Z, then we set Dx[A[1:τ ], S, Z] := Dy[A[1:τ ], S, Z \ {v}] if for all w ∈ V

with ({w, v}, t) ∈ E(G[B(Tx)]) it holds that w ∈ Ai ⇒ t < i. Otherwise, we
set Dx[A[1:τ ], S, Z] :=∞.

Case 3: If v ∈ Ai, i ∈ [τ ], then we set Dx[A[1:τ ], S, Z] := Dy[A[1:i−1], Ai \ {v}, A[i+1:τ ], S, Z],
if for all ({v, w}, t) ∈ E(G[B(Tx)]) it holds that t ≥ i ⇒ w ∈ ⋃t

j=1Aj ∪ S and
t < i⇒ w ∈ ⋃τ

j=t+1Aj ∪ S ∪ Z. Otherwise, we set Dx[A[1:τ ], S, Z] :=∞.
We prove the correctness for each case separately. We start with the first case.

Lemma A.5. Let G and T be as described above, x ∈ V (T ) be an introduce node of v, y ∈
V (T ) be the child node of x, 〈A[1:τ ], S, Z〉 be a coloring of Bx and v ∈ S. Then the following
holds:

1. Coloring 〈A[1:τ ], S\{v}, Z〉 of By is extendable to B(Ty) if and only if coloring 〈A[1:τ ], S, Z〉
of Bx is extendable to B(Tx).

2. The value of Dx[A[1:τ ], S, Z] agrees with Equation (5) and can be computed in O(1) time.

Proof. ⇒: Let 〈A[1:τ ], S \ {v}, Z〉 be a coloring of By and 〈A′[1:τ ], S′, Z ′〉 be an extension
to B(Ty), where |S′| = Dy[A[1:τ ], S \ {v}, Z]. Note that v 6∈ S′, because v 6∈ B(Ty) since x
is the introduce node for v. Since B(Tx) \ B(Ty) = {v}, we know that G[B(Ty)] − S′ is the
same temporal graph as G[B(Tx)]− (S′∪{v}). Hence, the coloring 〈A[1:τ ], S, Z〉 is extendable
to B(Tx) and |S′ ∪ {v}| = |S′|+ 1 implies that the table entry Dx[A[1:τ ], S, Z] = Dy[A[1:τ ], S \
{v}, Z] + 1.
⇐: Let 〈A[1:τ ], S \ {v}, Z〉 be not extendable to B(Ty), then 〈A[1:τ ], S, Z〉 is not extend-
able to B(Tx) because G[B(Ty)] is a temporal subgraph of G[B(Tx)], where v 6∈ B(Ty).
Hence, Dx[A[1:τ ], S, Z] = Dy[A[1:τ ], S \ {v}, Z] + 1 =∞+ 1 =∞.

Note that Dx[A[1:τ ], S, Z] can be computed in O(1) time because we just have to look up
the value of Dy[A[1:τ ], S, Z].

Next, we move to the correctness of the second case.
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Lemma A.6. Let G and T be as described above, x ∈ V (T ) be an introduce node of v, y ∈
V (T ) be the child node of x, 〈A[1:τ ], S, Z〉 be a coloring of Bx and v ∈ Z. Then the following
holds:

1. The coloring 〈A[1:τ ], S, Z〉 is extendable to B(Tx) if and only if the coloring 〈A[1:τ ], S,
Z \ {v}〉 of By is extendable to B(Ty) and for all ({w, v}, t) ∈ E(G[B(Tx)]) it holds
that w ∈ Ai ⇒ t < i.

2. The value of Dx[A[1:τ ], S, Z] agrees with Equation (5) and can be computed in O(|E|)
time.

Proof. ⇒: Let the coloring 〈A′[1:τ ], S′, Z ′〉 be an extension of the coloring 〈A[1:τ ], S, Z〉 toB(Tx).
Since B(Ty) = B(Tx) \ {v} and (Z \ {v}) ⊆ Z ⊆ Z ′, the coloring 〈A[1:τ ], S, Z \ {v}〉 of By
is extendable to B(Ty). Furthermore, v ∈ Z implies that for all time-edges ({w, v}, t) ∈
E(G[B(Tx)]) it holds that w ∈ Ai ⇒ t < i.
⇐: First, if coloring 〈A[1:τ ], S, Z\{v}〉 ofBy is not extendable toB(Ty) then coloring 〈A[1:τ ], S, Z〉
of Bx cannot be extendable to B(Tx) because G[B(Ty)] is a temporal subgraph of G[B(Tx)].
Hence, Dx[A[1:τ ], S, Z] =∞.

Let 〈A[1:τ ], S, Z\{v}〉 be a coloring ofBy which is extendable toB(Ty) and for all ({w, v}, t) ∈
E(G[B(Tx)] it holds that w ∈ Ai ⇒ t < i. Then we know that there is an extension 〈A′[1:τ ], S′, Z ′〉
of 〈A[1:τ ], S, Z \{v}〉 to B(Ty). We claim that 〈A′[1:τ ], S′, Z ′∪{v}〉 is a valid coloring of B(Tx).
Since 〈A′[1:τ ], S′, Z ′〉 is a valid coloring of B(Ty), we have that s ∈ A′1, z ∈ Z ′, and for
all i, j ∈ [τ ], a ∈ A′i and a′ ∈ A′j there is no temporal (a, a′)-path with departure time
at least i and arrival time at most j − 1 in G[B(Ty)] − S. Suppose there exist a ∈ A′i
and b ∈ Z ′ such that there is a temporal (a, b)-path P in G[B(Tx)] − S with departure time
at least i, for some i ∈ [τ ]. Since B(Tx) \ B(Ty) = {v} and 〈A′[1:τ ], S′, Z ′〉 is a valid coloring
of B(Ty), vertex v is the first vertex of color Z which is visited by P . Hence, there is a time-
edge ({w, v}, t) ∈ E(G[B(Tx)]) such that w ∈ Ai and i ≤ t, contradicting w ∈ Ai ⇒ t < i.
It follows that 〈A′[1:τ ], S′, Z ′ ∪ {v}〉 is a valid coloring of B(Tx) and hence 〈A[1:τ ], S, Z〉 is
extendable to B(Tx). Since v ∈ Z, we have Dx[A[1:τ ], S, Z] = Dy[A[1:τ ], S, Z \ {v}].

Note that Dx[A[1:τ ], S, Z] can be computed in O(|E|) time, since we can decide whether
for all ({w, v}, t) ∈ E(G[B(Tx)] it holds that w ∈ Ai ⇒ t < i by iterating once over the
time-edges in E.

Last, we show the correctness of the third case.

Lemma A.7. Let G and T be as described above, x ∈ V (T ) be an introduce node of v, y ∈
V (T ) be the child node of x, 〈A[1:τ ], S, Z〉 be a coloring of Bx and v ∈ Ai, where i ∈ [τ ]. Then
the following holds:

1. Coloring 〈A[1:τ ], S, Z〉 of Bx is extendable to B(Tx) if and only if coloring 〈A[1:i−1], Ai \
{v}, A[i+1:τ ], S, Z〉 of By is extendable to B(Ty) and for each ({v, w}, t) ∈ E(G[B(Tx)])

it holds that: t ≥ i⇒ w ∈ ⋃t
j=1Aj ∪ S and t < i⇒ w ∈ ⋃τ

j=t+1Aj ∪ S ∪ Z.
2. The value of Dx[A[1:τ ], S, Z] agrees with Equation (5) and can be computed in O(|E|)

time.

Proof. ⇒: Let 〈A[1:τ ], S, Z〉 be a valid coloring of Bx and 〈A′[1:τ ], S′, Z ′〉 be an extension
to B(Tx). Since B(Ty) = B(Tx) \ {v} and (Ai \ {v}) ⊆ Ai ⊆ A′i, the coloring 〈A1, A2, . . . , Ai \
{v}, . . . , Aτ , S, Z〉 of By is extendable to B(Ty). Let ({v, w}, t) ∈ E(G[B(Tx)]). We distinguish
two cases.
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Figure 5: The temporal (a, a′)-path P from the proof of Lemma A.7.

First, let t ≥ i. Note that w ∈ By since x is an introduce node for v. Since 〈A′[1:τ ], S′, Z ′〉 is
a valid coloring of B(Tx), w 6∈ Z since there is no temporal (v, w)-path with departure time t
in G[B(Tx)] − S′. Assume towards a contradiction that w ∈ Aj , where j ∈ [t + 1 : τ ]. Then
the time-edge ({v, w}, t) is a temporal (v, w)-path with departure time at least i and arrival
time at most j − 1, contradicting the fact that 〈A′[1:τ ], S′, Z ′〉 is a valid coloring of B(Tx).
Hence, w ∈ ⋃t

j=1Aj ∪ S.
Second, let t < i. Again, 〈A′[1:τ ], S′, Z ′〉 is a valid coloring of B(Tx) and therefore w 6∈⋃t

j=1Aj because otherwise there would be a temporal (w, v)-path in G[B(Tx)] − S′ with
departure time at least t and arrival time t < i, contradicting the fact that 〈A′[1:τ ], S′, Z ′〉 is a
valid coloring. Hence w ∈ ⋃τ

j=t+1Aj ∪ S ∪ Z.
⇐: First, if coloring 〈A1, A2, . . . , Ai \{v}, . . . , Aτ , S, Z〉 of By is not extendable to B(Ty) then
coloring 〈A[1:τ ], S, Z〉 of Bx cannot be extendable to B(Tx) because G[B(Ty)] is a temporal
subgraph of G[B(Tx)]. Hence, Dx[A[1:τ ], S, Z] =∞.

Let coloring 〈A1, A2, . . . , Ai \ {v}, . . . , Aτ , S, Z〉 of By be extendable to B(Ty) and for
each ({v, w}, t) ∈ E(G[B(Tx)]) it holds that: t ≥ i ⇒ w ∈ ⋃t

j=1Aj ∪ S and t < i ⇒ w ∈⋃τ
j=t+1Aj∪S∪Z. Then let 〈A′[1:τ ], S′, Z ′〉 be an extension of 〈A1, A2, . . . , Ai\{v}, . . . , Aτ , S, Z〉

to B(Ty). We claim that 〈A′1, A′2, . . . , A′i ∪ {v}, . . . , S′, Z ′〉 is a valid coloring for B(Tx). We
know s ∈ A′1 and z ∈ Z ′.

Suppose towards a contradiction that there exist a ∈ A′j and a′ ∈ A′`, j, ` ∈ [τ ], such that
there is a temporal (a, a′)-path P with departure time at least j and arrival time at most `−1.
Since coloring 〈A′[1:τ ], S′, Z ′〉 of B(Ty) is valid, we know that v appears in P . Thus, there are
time-edges ({w1, v}, t1), ({v, w2}, t2) ∈ E(G[B(Tx)]) in P such that t1 ≤ t2 and w1 appears
before v and v appears before w2 in P , where w1 ∈ A′u1 , w2 ∈ A′u2 . Note that w1 ∈ Au1
and w2 ∈ Au2 as x is an introduce node of v. Refer to Figure 5 for an illustration.

We know the following:
• u1 ≤ t1, otherwise there is a temporal (a,w1)-path with departure time at least j and

arrival time at most u1 − 1 in G[B(Ty)], contradicting the fact that 〈A′[1:τ ], S′, Z ′〉 is
valid.

• i ≤ t1, otherwise either w1 6∈
⋃τ
j=t1+1Aj ∪ S ∪ Z contradicting the fact that for

each ({v, w}, t) ∈ E(G[B(Tx)]) it holds that t < i ⇒ w ∈ ⋃τ
j=t+1Aj ∪ S ∪ Z, or

w1 ∈
⋃τ
j=t1+1Aj ∪ S ∪ Z and w ∈ Au1 , contradicting the fact that 〈A′[1:τ ], S′, Z ′〉 is a

coloring of B(Ty).
• i ≤ t2, otherwise i > t1 since t1 ≤ t2.
• u2 ≤ t2, otherwise i ≤ t2 and w2 6∈

⋃t2
j′=1Aj′ , contradicting the fact that for each ({v, w}, t) ∈

E(G[B(Tx)]) it holds that t < i ⇒ w ∈ ⋃τ
j=t+1Aj ∪ S ∪ Z, or w2 ∈

⋃t2
j′=1Aj′

and w2 ∈ Au2 , contradicting the fact that 〈A′[1:τ ], S′, Z ′〉 is a coloring of B(Ty).
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It follows that P contains the temporal (w2, a
′)-path as temporal subpath with departure time

at least u2 ≤ t2 and arrival time ` − 1. As this temporal subpath also exists in B(Ty), this
contradicts the fact that coloring 〈A′[1:τ ], S′, Z ′〉 of B(Ty) is valid. We conclude that P does
not exist.

Next, suppose towards a contradiction that there exist a ∈ A′j , j ∈ [τ ], and b ∈ Z such that
there is a temporal (a, b)-path P ′ with departure time at least j. The vertex v ∈ Ai is the last
vertex visited by P ′ which is not colored by Z, otherwise we would be able to find a subsequence
of P ′ similar to P . Thus, there are time-edges ({w1, v}, t1), ({v, b}, t2) ∈ E(G[B(Tx)]) which
are in P ′ such that w1 is visited before v and v is visited before b, where w1 ∈ A′u1 . We
conclude analogously to the case of P that u1 ≤ t1, i ≤ t1, i ≤ t2. Since i ≤ t2, we have
that either b 6∈ ⋃t

j=1Aj ∪ S, contradicting the fact that for each ({v, w}, t) ∈ E(G[B(Tx)]) it
holds that t ≥ i ⇒ w ∈ ⋃t

j=1Aj ∪ S, or b ∈
⋃t
j=1Aj ∪ S and b ∈ Z, contradicting the fact

that 〈A1, A2, . . . , Ai \ {v}, . . . , Aτ , S, Z〉 is a coloring of By. Hence, P ′ does not exist.
Clearly, Dx[A[1:τ ], S, Z] = Dy[A1, A2, . . . , Ai \ {v}, . . . , Aτ , S, Z] because v 6∈ S.
Note that Dx[A[1:τ ], S, Z] can be computed in O(|E|) time because we can iterate once

over the time-edge set E and decide if for all ({w, v}, t) ∈ E(G[B(Tx)] it holds that if t ≥ i
then w ∈ ⋃t

j=1Aj ∪ S and if t < i then w ∈ ⋃τ
j=t+1Aj ∪ S ∪ Z.

Forget node. Let x ∈ V (T ) be a forget node of T , y ∈ V (T ) its child, and By \Bx = {v}.
We set

Dx[A[1:τ ], S, Z] = min


mini∈[τ ]Dy[A[1:i−1], Ai ∪ {v}, A[i+1:τ ], S, Z],

Dy[A[1:τ ], S ∪ {v}, Z],

Dy[A[1:τ ], S, Z ∪ {v}]

 .

Lemma A.8. Let G and T be as described above, x ∈ V (T ) be a forget node of v, y ∈ V (T )
be the child node of x, and 〈A[1:τ ], S, Z〉 be a coloring of Bx. Then the following holds:

1. The coloring 〈A[1:τ ], S, Z〉 of Bx is extendable to B(Tx) if and only if it has an extension
to By which is itself extendable to B(Ty).

2. The value of Dx[A[1:τ ], S, Z] agrees with Equation (5) and can be computed in O(|E|)
time.

Proof. ⇒: Let 〈A′′[1:τ ], S′′, Z ′′〉 be an extension of 〈A[1:τ ], S, Z〉 to B(Tx). Since y is a child of x
and Bx ⊆ By, we know that B(Tx) = B(Ty) and therefore there is a coloring 〈A′[1:τ ], S′, Z ′〉
of By which is extendable to B(Ty), where S′ ⊆ S′′, Z ′ ⊆ Z ′′, and A′i ⊆ A′′i , for all i ∈ [τ ]. It
follows from Bx ⊆ By, that S ⊆ S′, Z ⊆ Z ′, and Ai ⊆ A′i, for all i ∈ [τ ].
⇐: It is easy to see that coloring 〈A[1:τ ], S, Z〉 of Bx is extendable to B(Tx) if there is a color-
ing 〈A′[1:τ ], S′, Z ′〉 of By which is extendable to B(Ty) and is itself an extension of 〈A[1:τ ], S, Z〉,
because G[B(Tx)] is a temporal subgraph of G[B(Ty)]. Since we want to extend the coloring
of Bx such that we have a minimum size S, we select the minimum over all possible extensions
of 〈A[1:τ ], S, Z〉 to By.

Note that we can compute the table entry Dx[A[1:τ ], S, Z] in O(|E|) time, because we have
to look up τ + 2 entries in Dy and τ ≤ |E|, see [31].

Join node. Let x ∈ V (T ) be a join node of T , y1, y2 ∈ V (T ) be children of x, and henceBx =
By1 = By2 . We set Dx[A[1:τ ], S, Z] := Dy1 [A[1:τ ], S, Z] +Dy1 [A[1:τ ], S, Z]− |S|.
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Lemma A.9. Let G be a temporal graph and T be a tree decomposition of G as described
above, x ∈ V (T ) be a join node of v, y1, y2 ∈ V (T ) be the child nodes of x, and 〈A[1:τ ], S, Z〉
be a coloring of Bx. Then the following holds:

1. The coloring 〈A[1:τ ], S, Z〉 of Bx = By1 = By2 is extendable to B(Tx) if and only if it is
extendable to B(Ty1) and B(Ty2).

2. The value of Dx[A[1:τ ], S, Z] agrees with Equation (5) and can be computed in O(1) time.

Proof. ⇒: Let 〈A[1:τ ], S, Z〉 be a coloring of Bx = By1 = By2 and let 〈A′[1:τ ], S′, Z ′〉 be an exten-
sion to B(Tx). Since B(Ty1), B(Ty2) ⊆ B(Tx) and Bx = By1 = By2 , we know that 〈A[1:τ ], S, Z〉
is extendable to B(Ty1) and B(Ty2).
⇐: Let coloring 〈A[1:τ ], S, Z〉 of Bx be extendable to B(Ty1) and B(Ty2). Take 〈A′[1:τ ], S′, Z ′〉
and 〈A′′[1:τ ], S′′, Z ′′〉 to be extensions to B(Ty1) respectively to B(Ty2). We claim that 〈A′1 ∪
A′′1, A

′
2 ∪A′′2, . . . , A′τ ∪A′′τ , S′ ∪ S′′, Z ′ ∪ Z ′′〉 is a valid coloring of B(Tx). Suppose not, that is,

〈A′1 ∪ A′′1, A′2 ∪ A′′2, . . . , A′τ ∪ A′′τ , S′ ∪ S′′, Z ′ ∪ Z ′′〉 is a coloring but not valid, or it forms no
coloring.

In the first case, each s 6∈ A′1 ∪ A′′1 or z 6∈ Z ′ ∪ Z ′′ contradicts the fact that 〈A′[1:τ ], S′, Z ′〉
and 〈A′′[1:τ ], S′′, Z ′′〉 are valid colorings. Next, suppose there are a ∈ A′i∪A′′i , i ∈ τ , and b ∈ Z ′∪
Z ′′ such that there is a temporal (a, b)-path P with departure time at least i in G[B(Tx)]−(S′∪
S′′). Then, either P exists inG[B(Ty1)] or inG[B(Ty2)], contradicting the fact that 〈A′[1:τ ], S′, Z ′〉
and 〈A′′[1:τ ], S′′, Z ′′〉 are valid colorings, or P contains an edge ({v, w}, t) that is neither
in G[B(Ty1)] nor in G[B(Ty2)]. It follows that {v, w} 6∈ By1 ∩ By,2 but {v, w} ⊆ Bx, con-
tradicting the fact that T is a nice tree decomposition. It is not difficult to see that the case
of a ∈ A′i ∪ A′′i and a ∈ A′j ∪ A′′j , i, j ∈ τ , such that there is a temporal (a, a′)-path P with
departure time at least i at arrival time at most j − 1 in G[B(Tx)] − (S′ ∪ S′′), follows the
same argumentation.

In the second case, that is, 〈A′1 ∪ A′′1, A′2 ∪ A′′2, . . . , A′τ ∪ A′′τ , S′ ∪ S′′, Z ′ ∪ Z ′′〉 forms no
coloring, there is a vertex v ∈ B(Ty2) ∩ B(Ty1) which has different colors in 〈A′[1:τ ], S′, Z ′〉
and 〈A′′[1:τ ], S′′, Z ′′〉. If v 6∈ Bx = By1 = By2 , then B−1(v) is not a connected subtree of T ,
contradicting the fact that T is a nice tree decomposition. If v ∈ Bx, then v has different
colors in 〈A[1:τ ], S, Z〉, contradicting the fact that 〈A[1:τ ], S, Z〉 is a coloring of Bx. Altogether,
it follows that 〈A′1 ∪A′′1, A′2 ∪A′′2, . . . , A′τ ∪A′′τ , S′ ∪ S′′, Z ′ ∪ Z ′′〉 is a valid coloring of B(Tx).

Furthermore, this implies that for all vertices w ∈ B(Tx) it holds that w ∈ S′ ∩ S′′
implies w ∈ S. Hence, |S′|+ |S′′| − |S| = |S′|+ |S′′| − |S′ ∩ S′′| = |S′ ∪ S′′|.

Note that by a look up one table entry of Dy1 and one in Dy2 , we can compute the table
entry Dx[A[1:τ ], S, Z] in O(1) time.

Having Lemmata A.3, A.4, A.5, A.6, A.7, A.8 and A.9 at hand, we now prove Theorem 4.7.

Proof of Theorem 4.7. The algorithm works as follows on input instance I = (G = (V,E, τ), s, z, k)
of Temporal (s, z)-Separation. Let T be a nice tree decomposition for the underlying
graph G↓ of width at most tw(G↓).

1. Add s and z to every bag in O(tw(G↓) · |V |) time. Note that |V (T )| ∈ O(tw(G↓) · |V |)
and that each bag is of size at most tw(G↓) + 2.

2. Compute the dynamic program of Equation (5) on T . This can be done in O((τ +
2)tw(G↓)+2 · tw(G↓) · |V | · |E|) time because there are at most (τ + 2)tw(G↓)+2 possible
colorings for each bag, there are at most O(tw(G↓) · |V |) many bags, and table entry
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for one coloring can be computed in O(|E|) time, see Lemmata A.4, A.5, A.6, A.7, A.8
and A.9.

3. Iterate over the root table Dr. If there is an entry of size at most k, then output yes,
otherwise output no. The correctness of this step follows from Lemma A.3.

Alltogether, the input instance I can be decided in O((τ +2)tw(G↓)+2 · tw(G↓) · |V | · |E|) time.
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