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Abstract

A topological graph is a graph drawn in the plane. A topological graph is k-plane, k > 0,
if each edge is crossed at most k times. We study the problem of partitioning the edges of a
k-plane graph such that each partite set forms a graph with a simpler structure. While this
problem has been studied for k = 1, we focus on optimal 2-plane and 3-plane graphs, which
are 2-plane and 3-plane graphs with maximum density. We prove the following results. (i) It
is not possible to partition the edges of a simple optimal 2-plane graph into a 1-plane graph
and a forest, while (ii) an edge partition formed by a 1-plane graph and two plane forests
always exists and can be computed in linear time. (iii) We describe efficient algorithms
to partition the edges of a simple optimal 2-plane graph into a 1-plane graph and a plane
graph with maximum vertex degree 12, or with maximum vertex degree 8 if the optimal
2-plane graph is such that its crossing-free edges form a graph with no separating triangles.
(iv) We exhibit an infinite family of simple optimal 2-plane graphs such that in any edge
partition composed of a 1-plane graph and a plane graph, the plane graph has maximum
vertex degree at least 6 and the 1-plane graph has maximum vertex degree at least 12.
(v) We show that every optimal 3-plane graph whose crossing-free edges form a biconnected
graph can be decomposed, in linear time, into a 2-plane graph and two plane forests.

1 Introduction

Partitioning the edges of a graph such that each partite set induces a subgraph with a simpler
structure is a fundamental problem in graph theory with various applications, including the
design of graph drawing algorithms. For example, a classic result by Schnyder [23] states that
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the edge set of any maximal planar graph can be partitioned into three trees, which can be used
to efficiently compute planar straight-line drawings on a grid of quadratic size. Edge partitions of
planar graphs have also been studied by Gonçalves [15], who proved that the edges of every planar
graph can be partitioned into two outerplanar graphs, thus solving a conjecture by Chartrand
et al. [6], and improving previous results by Elmallah [13], Kedlaya [18], and Ding et al. [11].
More in general, there exist various graph parameters based on edge partitions. For example,
the arboricity of a graph G is the minimum number of forests needed to cover all edges of G,
while G has thickness t if it is the union of t planar graphs. Durocher and Mondal [12] studied
the interplay between the thickness t of a graph and the number of bends per edge in a drawing
that can be partitioned into t planar sub-drawings.

Recently, edge partitions have been studied for the family of 1-planar graphs. A graph is
k-planar (k ≥ 1) if it can be drawn in the plane such that each edge is crossed at most k
times [22]; a topological graph is k-plane if it has at most k crossings per edge. The k-planar
graphs represent a natural extension of planar graphs, and fall within the more general framework
of beyond planarity. Beyond planarity studies graph families that admit drawings where some
prescribed edge crossing configurations are forbidden [3, 10, 16, 17]. Ackerman [1] proved that
the edges of a 1-plane graph can be partitioned into a plane graph (a topological graph with no
crossings) and a plane forest, extending an earlier result by Czap and Hudáck [7]. A 1-planar
graph with n vertices is optimal if it contains exactly 4n− 8 edges, which attains the maximum
density for 1-planar graphs. Lenhart et al. [20] proved that every optimal 1-plane graph can
be partitioned into two plane graphs such that one has maximum vertex degree four, where
the bound on the vertex degree is worst-case optimal. Di Giacomo et al. [9] proved that every
triconnected (not necessarily optimal) 1-plane graph can be partitioned into two plane graphs
such that one has maximum vertex degree six, which is also a tight bound. This result was
exploited to show that every such graph admits a visibility representation in which the vertices
are orthogonal polygons with few reflex corners each, while the edges are horizontal and vertical
lines of sight between vertices [9]. Additional results on edge partitions of various subclasses of
1-plane graphs are reported in [8].

While 1-planar graphs have been extensively studied (for a recent survey refer to [19]), and
their structure has been deeply understood, this is not the case for 2-planar and 3-planar graphs.
These graphs have at most 5n−10 edges and 5.5n−11 edges [22], respectively, and their structure
is more complex. Similarly to 1-planar graphs, a 2-planar (respectively, 3-planar) graph with n
vertices is optimal if it contains exactly 5n−10 (respectively, 5.5n−11) edges; see also Section 2
for formal definitions. Examples of optimal 2-plane and optimal 3-plane graphs are shown in
Figs. 1(a) and 1(b), respectively. Bekos et al. [4] recently characterized optimal 2-planar and
optimal 3-planar graphs, and showed that these graphs have a regular structure; refer to Section 2
for details. In this paper, we build upon this characterization and we initiate the study of edge
partitions of simple (i.e., with neither self-loops nor parallel edges) optimal 2-plane graphs. We
then extend some of our results to a subclass of optimal 3-plane graphs. More precisely, our
contributions are as follows.

• We prove that it is not possible to partition the edges of a simple optimal 2-plane graph
G into a 1-plane graph and a forest (see Theorem 1). Note that, by Nash-Williams for-
mula [21], 2-planar graphs have arboricity at most five, while 1-planar graphs have arboric-
ity at most four. Hence, our result implies that in a decomposition of G into five forests,
it is not possible to pick four of them forming a 1-plane graph.

• On the positive side, every optimal 2-plane graph, whose crossing-free edges form a bicon-
nected graph, can be partitioned into a 1-plane graph and two plane forests. This implies
that every simple optimal 2-plane graph admits such an edge partition (see Theorem 2).

2



(a) (b)

Figure 1: An edge partition of: (a) an optimal 2-plane graph into a 1-plane graph (solid) and
two plane forests (dashed and dotted); (b) an optimal 3-plane graph into a 2-plane graph (solid)
and two plane forests (dashed and dotted).

This result exploits some insights in the structure of optimal 2-plane graphs; also, the edge
partition can be computed in linear time. For an example, refer to Fig. 1(a).

• Additionally, we prove that the edges of a simple optimal 2-plane graph can always be
partitioned into a 1-plane graph and a plane graph with maximum vertex degree 12 (see
Theorem 3). The upper bound on the vertex degree can be lowered to 8 if the crossing-
free edges of the optimal 2-plane graph form a graph with no separating triangles (see
Theorem 4). Both bounds are achieved with constructive techniques in polynomial time.

• Besides the above upper bound on the vertex degree, we establish a non-trivial lower
bound. Specifically, we exhibit an infinite family of simple optimal 2-plane graphs such
that in any edge partition composed of a 1-plane graph and a plane graph, the plane graph
has maximum vertex degree at least 6 and the 1-plane graph has maximum vertex degree
at least 12 (see Theorem 5).

• We finally consider (non-simple) optimal 3-plane graphs and prove that any such a topo-
logical graph, whose crossing-free edges form a biconnected graph, can be partitioned into
a 2-plane graph and two plane forests; also in this case, the edge partition can be computed
in linear time (see Theorem 6). For an example, refer to Fig. 1(b).

Section 2 contains preliminaries and notation. In Section 3, we present our results for optimal
2-plane graphs, while in Section 4 we extend them to optimal 3-plane graphs. A concluding
discussion followed by a set of interesting open problems can be found in Section 5.

2 Preliminaries and Notation

Drawings and planarity. A graph is simple if it contains neither self-loops nor parallel edges.
A drawing of a graph G = (V,E) is a mapping of the vertices of V to points of the plane, and of
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(a) (b)

Figure 2: (a) The pentangulation of the graph G in Fig. 1(a). (b) A 1-plane graph obtained
from G by removing two adjacent chords from each filled pentagon.

the edges of E to Jordan arcs connecting their corresponding endpoints but not passing through
any other vertex. We only consider simple drawings, i.e., drawings such that two arcs representing
two edges have at most one point in common, and this point is either a common endpoint or a
common interior point where the two arcs properly cross each other. A graph drawn in the plane
is also called a topological graph. The crossing graph C(G) of a topological graph G has a vertex
for each edge of G and an edge between two vertices if and only if the two corresponding edges
of G cross each other. A topological graph is plane if it has no edge crossings. A plane graph
subdivides the plane into topologically connected regions, called faces. The unbounded region
is the outerface. The length of a face f is the number of vertices encountered in a closed walk
along the boundary of f . If a vertex v is encountered k > 0 times, then v has multiplicity k in
f . In a biconnected graph, all vertices have multiplicity one in the faces they belong to.

k-planar graphs. A topological graph is k-plane if each edge is crossed at most k times. A
pentangulation P (respectively, hexangulation H) is a plane graph such that all its faces are
5-cycles (respectively, 6-cycles), which we call pentagons (respectively, hexagons). Two parallel
edges are homotopic if either the interior or the exterior region bounded by their curves contains
no vertices. A self loop is homotopic if the interior or the exterior region bounded by its curve
contains no vertices. Bekos et al. [4] proved that an n-vertex graph G is optimal 2-planar if
and only if it admits a drawing without homotopic self-loops and parallel edges, such that the
graph formed by the crossing-free edges is a pentangulation P (G) with n vertices, and each face
of P (G) has five crossing edges in its interior, which we call chords in the following. Also, each
chord has exactly two crossings. A pentagon with its five chords routed as described above will
be called a filled pentagon. Fig. 2(a) shows the pentangulation P (G) of the optimal 2-plane graph
G of Fig. 1(a). Similarly, Bekos et al. proved that an n-vertex graph G is optimal 3-planar if
and only if it admits a drawing without homotopic self-loops and homotopic parallel edges, such
that the graph formed by the crossing-free edges is a hexangulation H(G) with n vertices, and
each face of H(G) has eight crossing edges in its interior, which we also call chords. Accordingly,
a hexagon with its eight chords routed as described above will be called a filled hexagon.

Arboricity and orientations. The arboricity of a graph is the minimum number of forests
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into which its edges can be partitioned. Nash-Williams [21] proved that a graph G has arboricity
a ≥ 1 if and only if, a = max{d mS

nS−1e} over all subgraphs S of G with nS ≥ 2 vertices and mS

edges. A d-orientation of a graph G is an orientation of the edges of G such that each vertex
has at most d outgoing edges, for some integer d ≥ 1. Note that if a graph has arboricity a, then
it admits an a-orientation (while the converse may not be true). Given two vertices s and t of
a graph G, an st-orientation of G is an orientation of its edges such that G becomes a directed
acyclic graph with a single source s and a single sink t.

Edge partitions. Given a topological graph G = (V,E), an edge partition of G is denoted by
〈E1, . . . , Ep〉, for some p > 1, where E = E1 ∪ · · · ∪ Ep and Ei ∩ Ej = ∅ (1 ≤ i 6= j ≤ p). We
denote by G[Ei] the topological graph obtained from G by removing all edges not in Ei and all
isolated vertices.

3 Edge Partitions of Optimal 2-plane Graphs

We begin with the following property, which will be useful in the remainder of this section.

Property 1. Let G′ = (V,E \ R) be a topological graph obtained by removing a subset R of
crossing edges from a simple optimal 2-plane graph G = (V,E). Graph G′ is 1-plane if and only
if R has (at least) two adjacent chords for each filled pentagon of G.

Proof. The crossing graph C(G) of G contains a cycle of length 5 for each filled pentagon of G,
where adjacent chords of G correspond to vertices of C(G) that belong to the same cycle and are
at distance two. Notice that G′ is 1-plane if and only if its crossing graph C(G′) has maximum
vertex degree one and thus if and only if the edges in R correspond to a dominating set of C(G).
Since a dominating set of C(G) has at least two non adjacent vertices from each cycle, R contains
at least two adjacent chords for each filled pentagon of G.

For example, the graph in Fig. 2(b) is obtained by removing two adjacent chords from each filled
pentagon of an optimal 2-plane graph.

3.1 Edge partitions with acyclic subgraphs

As already mentioned, the edge set of a 1-plane graph can always be partitioned into a plane
graph and a plane forest [1]. One may wonder whether this result can be generalized to 2-plane
graphs, that is, whether the edge set of every 2-plane graph can be partitioned into a 1-plane
graph and a forest. Theorem 1 shows that this may not be always possible. In particular, this is
never the case for optimal 2-plane graphs. On the positive side, Theorem 2 gives a constructive
technique to partition the edges of every optimal 2-plane graph into a 1-plane graph and two
plane forests (rather than one).

Theorem 1. Let G be a simple optimal 2-plane graph. Graph G has no edge partition 〈E1, E2〉
such that G[E1] is a 1-plane graph and G[E2] is a forest.

Proof. Consider an edge partition 〈E1, E2〉 such that G[E1] is a 1-plane graph. By Property 1,
E2 contains at least two chords from each filled pentagon of G. By Euler’s formula, if G has
n vertices, then the pentangulation P (G) has 2

3 (n − 2) faces, and thus G has 2
3 (n − 2) filled

pentagons. It follows that E2 contains at least 2 × 2
3 (n − 2) edges, and hence G[E2] can be a

forest only if n ≤ 5. However, since G is simple, n > 5 holds, as otherwise P (G) would be a
5-cycle and G would have five pairs of parallel chords.
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In order to prove Theorem 2, we first prove an analogous result for a wider family of optimal
2-plane graphs, and then show that this family contains all simple optimal 2-plane graphs.

Lemma 1. Every n-vertex optimal 2-plane graph G = (V,E) whose pentangulation P (G) is
biconnected has an edge partition 〈E1, E2, E3〉, which can be computed in O(n) time, such that
G[E1] is a 1-plane graph and both G[E2] and G[E3] are plane forests.

Proof. To construct the desired edge partition, we first appropriately select the edges of E1 so
that E′ = E \E1 contains two adjacent chords for each filled pentagon of G. By Property 1, this
implies that G[E1] is a 1-plane graph. We then color the edges of E′ with two colors, say green
and red, so that each monochromatic set is a plane forest. The set of green edges will correspond
to E2, while the set of red edges to E3.

We aim at computing an st-orientation of P (G). Recall that, given a biconnected plane graph
and two vertices s and t on its outerface, it is possible to construct an st-orientation of the graph
in linear time (see, e.g., [14, 24]). Since P (G) is biconnected, we can compute an st-orientation
of P (G) (with s and t on the outerface). According to this orientation, all outgoing edges of any
vertex v ∈ P (G) appear consecutively around v, followed by all the incoming edges of v ([24,
Lemma 2]). For any vertex v ∈ P (G) distinct from s and t, this allows us to uniquely define
the leftmost (rightmost) face of v as the face containing the last incoming and first outgoing
edges (last outgoing and first incoming edges, respectively) of v in clockwise order around v.
We use this fact to classify the internal faces of P (G) in different types. By [24, Lemma 1],
each internal face f of P (G) has a source vertex s(f) and a target vertex t(f), and consists of
two directed paths from s(f) to t(f), say pl(f) and pr(f). Since P (G) is a pentangulation, we
have |pl(f)| + |pr(f)| = 5, |pl(f)| ≤ 4, and |pr(f)| ≤ 4. We say that f is a face of type i − j
if |pl(f)| = i and |pr(f)| = j. Hence, in total there exist exactly four different types of internal
faces: 1 − 4, 4 − 1, 2 − 3 and 3 − 2; refer to Fig. 3. For each internal face of P (G), we select
two adjacent chords and we add them to E′ as follows. For the first two types of faces, we select
the two chords of f in G that are incident to the target vertex t(f). In the other two types, we
select the two edges that are incident to the middle vertex of the directed path with edge-length
2. If i < j (respectively, i > j) we color the selected edges red (respectively, green). Note that
we have not selected and colored any chord of the outerface; this selection will be made at the
very end.

We now claim that each monochromatic subgraph induced by the red and green edges is a
(simple) forest. We prove this claim for the red subgraph, symmetric arguments hold for the
green one. We orient each pair of red edges of every interior face f of P (G) towards their common
end-vertex. Observe that if (u, v) is a directed red edge in a face f from u to v, then f is the
leftmost face of u. Since, the leftmost face of each vertex is unique, it follows that every vertex
has at most one outgoing red edge. Hence, a cycle of red edges would be actually a directed cycle
(otherwise it would contain at least one vertex with out-degree two, contradicting the previous
statement). Consider the plane subgraph Gred of G containing the edges of P (G) (oriented
according to the st-orientation defined above) and the red edges (each pair oriented towards the
common end-vertex). We show that Gred does not contain directed cycles, which implies that
the red subgraph is a forest. We actually prove a stronger property of Gred, namely, we show
that the orientation of Gred is an st-orientation. The proof is by induction on the number i ≥ 0
of internal faces of P (G) having red chords in Gred. If i = 0, the statement trivially follows
since Gred corresponds to P (G). Assume that the claim holds for i ≥ 0, and suppose there are
i + 1 internal faces of P (G) having red chords in Gred. Consider any such face f of P (G), and
let G′red be the graph obtained from Gred by removing the two red chords of f . Graph G′red is
st-oriented by the inductive hypothesis. Obviously, reinserting the two removed chords in G′red
creates neither new sources nor new sinks. Moreover, reinserting the two chords cannot create
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s(f)

t(f)

(a) 1− 4

s(f)

t(f)

(b) 4− 1

s(f)

t(f)

(c) 2− 3

s(f)

t(f)

(d) 3− 2

Figure 3: Illustration for Theorem 2. Red (respectively, green) edges are dashed (respectively,
dotted).

a directed cycle, since each reinserted chord (u, v) connects either vertices on opposite paths of
face f , or v = t(f). In the first case, there cannot be a directed path in G′red from v to u by [24,
Lemma 4]. In the second case, observe that there is already a directed path from u to v in G′red
and thus there cannot be a directed path from v to u because G′red is acyclic.

It remains to select and color two chords of G from the outerface of P (G). For each interior
face f of P (G), red or green edges are never incident to the source vertex s(f). Hence, there
is neither a red nor a green edge incident to s (which is the source of the st-orientation). We
arbitrarily select one of the two chords of G in the outerface of P (G) that is incident to s to be
red and the other one to be green. Since the degree of s in the red (respectively, green) subgraph
is equal to one, it follows that no cycle is created. Furthermore, the red (respectively, green)
subgraph is simple, because every vertex has at most one outgoing red edge (respectively, green
edge) and thus two parallel edges would form a cycle. Since an st-orientation can be computed
in O(n) time, and since G has O(n) faces and O(n) edges, the theorem follows. Fig. 1(a) shows
an edge partition computed with the described algorithm.

In the following lemma, we prove that every simple optimal 2-plane graph belongs to the family
of graphs that satisfy the conditions of Lemma 2.

Lemma 2. The pentangulation P (G) of a simple optimal 2-plane graph G is biconnected.

Proof. Suppose to the contrary that there exists a cutvertex v of P (G). Then there exists a face
f of P (G) such that a closed walk along the boundary of f encounters v at least twice, i.e., v
has multiplicity greater than one in f . Also, according to the characterization of optimal 2-plane
graphs in [4], f has length 5 and it induces a complete graph K5 in G. Since v has multiplicity
greater than one in f , it follows that there exists a self-loop at v; a contradiction, since G is
simple.

The next theorem follows directly from Lemma 1 and Lemma 2.

Theorem 2. Every n-vertex simple optimal 2-plane graph G = (V,E) has an edge partition
〈E1, E2, E3〉, which can be computed in O(n) time, such that G[E1] is a 1-plane graph and both
G[E2] and G[E3] are plane forests.
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v0

v1

v2

v3

v4

(a)

v0

v1

v2

v3

v4

(b)

v0

v1

v2

v3

v4

(c)

Figure 4: Illustration for Lemma 3. (a) k = 0 and j = 1; (b) k = 1 and j = 3; (c) k = 2 and
j = 4.

Finally, combining Theorem 2 with a result by Ackerman [1], stating that the edges of a 1-plane
graph can be partitioned into a plane graph and a plane forest, we obtain the following.

Corollary 1. Every simple optimal 2-plane graph has an edge partition 〈E1, E2, E3, E4〉 such
that G[E1] is a plane graph, and G[Ei] is a plane forest, for i ≥ 2.

3.2 Edge partitions with bounded vertex degree subgraphs

We now prove that the edge set of a simple optimal 2-plane graph can be partitioned into a
1-plane graph and a plane graph whose maximum vertex degree is bounded by a small constant.
An analogous result holds for optimal 1-plane graphs [20]. We will make use of the following
technical lemma.

Lemma 3. Let v0, v1, v2, v3, v4 be the (distinct) vertices of a 5-cycle C in clockwise order starting
from v0. Let the edges of C be arbitrarily oriented. There exists an index 0 ≤ j ≤ 4 such that
each of the three vertices vj, vj+2, vj+3 (indexes taken modulo 5) is incident to at least one
outgoing edge of the 5-cycle.

Proof. We distinguish a few cases based on the number k of vertices of C incident to two incoming
edges. Refer to Fig. 4 for an illustration.

• If k = 0, the claim trivially follows since any index 0 ≤ j ≤ 4 satisfies the statement.

• If k = 1, let 0 ≤ h ≤ 4 be the index of the only vertex vh incident to two incoming edges
of C. Then both j = h− 1 and j = h+ 1 satisfy the statement.

• If k = 2, the two vertices vh and vh′ incident to two incoming edges of C cannot be adjacent,
and hence the vertex vj that is adjacent to both of them satisfies the statement.

Note that the case k > 2 is not possible, as there would be an edge that is incoming with respect
to both its end-vertices. This concludes our proof.

Theorem 3. Every n-vertex simple optimal 2-plane graph G = (V,E) has an edge partition
〈E1, E2〉, which can be computed in O(n) time, such that G[E1] is a 1-plane graph and G[E2] is
a plane graph of maximum vertex degree 12.

8



Proof. We construct the desired edge partition as follows. Remove three chords from every
pentagon of P (G) such that the resulting graph G′ is plane and all its faces have length three.
Compute a 3-orientation of G′ in linear time, by using the algorithm in [23]. From now on,
we assume that the edges of P (G) are directed according to this 3-orientation. For each filled
pentagon of G we select three vertices that satisfy the conditions of Lemma 3, and we mark to be
part of E2 the two chords of the pentagon incident to the selected vertices. All other edges are
part of E1. Since each vertex has at most three outgoing edges in the 3-orientation of P (G), and
each of these edges is shared by exactly two pentagons (as otherwise G would be non-simple), we
have that each vertex is selected for at most six pentagons and therefore is incident to at most
12 edges in E2.

By Property 1, graph G[E1] is 1-plane. Also, graph G[E2] has maximum vertex degree 12 as
shown above, and no two edges of G[E2] cross, because either they share an end-vertex or they
are inside different pentagons of P (G).

The upper bound of Theorem 3 can be improved if P (G) has no separating triangles. The
next lemma can be proved by using the Nash-Williams formula.

Lemma 4. A simple pentangulation with no separating triangles has arboricity two.

Proof. Let P be a simple pentangulation with no separating triangles. Consider any subgraph
S of P with nS vertices and mS edges. We claim that any face of S has length at least four.
Suppose, for a contradiction, that S contains a face f with length smaller than four. Since P
does not contain parallel edges, the length of f cannot be two. Hence, we assume that f has
length three. Then either f is a face of P as well, or f is a separating triangle of P . Both cases
contradict our assumption.

Consequently, all faces of S have length at least four, by Euler’s formula and by the Hand-

shaking Lemma we conclude that S has mS ≤ 4(nS−2)
2 ≤ 2nS edges. On the other hand P has

more than n− 1 edges. Thus, by the Nash-Williams formula, the arboricity of P is two.

Theorem 4. Every n-vertex simple optimal 2-plane graph G = (V,E) whose pentangulation
P (G) has no separating triangles has an edge partition 〈E1, E2〉, which can be computed in
O(n1.5) time, such that G[E1] is a 1-plane graph and G[E2] is a plane graph of maximum vertex
degree 8.

Proof. By Lemma 4, P (G) has arboricity at most two, and hence admits a 2-orientation. Asahiro
et al. [2] proved that, for a given k, a k-orientation (if it exists) of an (unweighted) graph with
m edges can be computed in O(m1.5) time. It follows that we can use the algorithm in [2] to
compute a 2-orientation of P (G) in O(n1.5) time. We then proceed similarly as for the proof of
Theorem 3 in order to construct the desired edge partition. For each pentagon we select three
vertices that satisfy the conditions of Lemma 3, and we mark the two chords of the pentagon
incident to the selected vertices to be part of E2. Since each vertex has at most two outgoing
edges in the 2-orientation of P (G), and each of these edges is shared by exactly two pentagons,
we have that each vertex is selected for at most four pentagons and therefore is incident to at
most 8 marked edges.

The next corollary is a consequence of Theorems 3 and 4, together with the fact that every 3-
connected 1-plane graph can be decomposed into a plane graph and a plane graph with maximum
vertex degree six [9].

Corollary 2. Every n-vertex simple optimal 2-plane graph G has an edge partition 〈E1, E2, E3〉,
which can be computed in O(n) time, such that G[E1] is plane, G[E2] is plane with maximum
vertex degree 12, and G[E3] is plane with maximum vertex degree 6. Also, if P (G) has no
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separating triangles, then G has an edge partition 〈E1, E2, E3〉, which can be computed in O(n1.5)
time, such that G[E1] is plane, G[E2] is plane with maximum vertex degree 8, and G[E3] is plane
with maximum vertex degree 6.

Proof. By Theorem 3, one can compute in O(n) time an edge partition 〈E′1, E2〉 such that G[E′1]
is 1-plane and G[E2] is a plane graph with maximum vertex degree 12. Also, by Theorem 4, if
P (G) has no separating triangles, one can compute in O(n1.5) time an edge partition 〈E′1, E2〉
of E such that G[E′1] is 1-plane and G[E2] is a plane graph with maximum vertex degree 8.

On the other hand, Di Giacomo et al. [9] proved that the edges of a triconnected 1-plane graph
can be partitioned into a plane graph and a plane graph with maximum vertex degree 6 in linear
time. Thus, it suffices to show that G[E′1] is triconnected. Recall that, both the algorithm of
Theorem 3 and the algorithm of Theorem 4 partition the edges so that E2 contains two adjacent
chords from each filled pentagon of G. It follows that the crossing-free edges of G[E′1] form a
plane graph whose faces have either length three or four, and each face of length four contains
two crossing chords in its interior (see, e.g., Fig. 2(b)). Then, G[E′1] has a triangulated plane
graph as a spanning subgraph, and thus it is triconnected.

We conclude this section by proving a lower bound for the maximum vertex degree of an edge
partition into a 1-plane graph and a plane graph or into two plane graphs.

Theorem 5. There exists an infinite family G of simple optimal 2-plane graphs, such that in any
edge partition 〈E1, E2〉 of G ∈ G where G[E1] is 1-plane and G[E2] is plane, G[E1] has maximum
vertex degree at least 12 and G[E2] has maximum vertex degree at least 6.

(a) (b) (c)

Figure 5: Illustrations for Theorem 5.

Proof. For every n > 24, we construct a graph Gn with O(n) vertices as described in the
following. Consider the plane graph G1 in Fig. 5(a). Note that all faces of G1 have length five,
except for the outer face which is a 4-cycle. Construct the graph G2 by gluing a copy of the
graph G1 in each of the three gray-tiled quandrangular faces of the graph in Fig. 5(b). Note
that all faces of G2 have length five, except for the outer face which is a 3-cycle. Then, starting
from an n-vertex maximal plane graph Mn, identify each face of Mn (including its outer face)
with the outer face of a copy of G2. Note that this operation is feasible, since all faces of Mn are
3-cycles by maximality. This results in a pentangulation Pn with O(n) vertices. Gn is obtained
by adding all five chords inside each pentagon of Pn. Graph Gn is optimal 2-plane as it satisfies
the characterization in [4], and it is simple because Pn is simple and triconnected.

Consider now any edge partition 〈E1, E2〉 of Gn, such that G[E1] is 1-plane. Then, by
Property 1, E2 contains at least two chords of each filled pentagon of Gn. Therefore, for each
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face of Mn, there are at least three edges of E2 having one end-vertex in Mn (at least one for
each filled pentagon incident to the outer face of the copy of G2 identified with this face). This
means that E2 contains at least 3(2n− 4) = 6n− 12 edges incident to vertices of Mn. Let k be
the maximum number of edges of E2 that are incident to a single vertex of Mn. Then, we have
kn ≥ 6n− 12⇒ k ≥ 6 for n > 12.

Similarly, since G[E2] is plane, E1 contains at least three chords of each filled pentagon of
Gn, and by the same argument used above, we can conclude that there are at least six edges
of E1 having one end-vertex in Mn, and hence E1 contains at least 6(2n− 4) = 12n− 24 edges
incident to vertices of Mn. Let k be the maximum number of edges of E1 that are incident to a
single vertex of Mn, we have kn ≥ 12n− 24⇒ k ≥ 12 for n > 24.

4 Edge Partitions of Optimal 3-plane Graphs

In this section, we study optimal 3-plane graphs and we aim at showing the existence of a
decomposition into a 2-plane graph and two plane forests. It is known that no optimal 3-plane
graph is simple [4], and hence its hexangulation may also be non-simple. We show that a similar
strategy as the one used in the proof of Theorem 2 can be employed provided that the underlying
hexangulation of the graph is biconnected and hence each of its faces is a simple 6-cycle. Consider
a filled hexagon h of an optimal 3-plane graph G. If the hexangulation H(G) is biconnected, h
contains six distinct vertices, which we denote by v0, v1, . . . , v5 following their clockwise order in
a closed walk along the boundary of h; refer to Fig. 6(a). We know that h contains 8 chords (see
Section 2), and, in particular, there are only two vertices of h that are not connected by an edge
of h; we call these two vertices the poles of h (black in Fig. 6(a)). Let vi and vj (0 ≤ i < j ≤ 5)
be the poles of h. Note that j − i = 3, and that each chord of h is crossed at most twice after
removing one of the following patterns:

(α) the two chords of h incident to vi or to vj ; see Fig. 6(b),

(β) one of the two Z-paths (vi, vi+2), (vi+2, vj+2), (vj+2, vj) and (vi, vj+1), (vj+1, vi+1), (vi+1, vj),
where indexes are taken modulo 6; see Figs. 6(c)-6(d), and

(γ) any three adjacent chords of h; see Fig. 6(e).

vi vj

(a)

vi vj

(b) Pattern (α)

vi vj

(c) Pattern (β)

vi vj

(d) Pattern (β)

vi vj

(e) Pattern (γ)

Figure 6: (a) A filled hexagon (poles shown in black). (b)–(d) The three patterns.

Theorem 6. Every n-vertex optimal 3-plane graph G = (V,E) whose hexangulation H(G) is
biconnected has an edge partition 〈E1, E2, E3〉, which can be computed in O(n) time, such that
G[E1] is a 2-plane graph, and both G[E2] and G[E3] are plane forests.

Proof. To construct the desired edge partition, we first guarantee that E′ = E \E1 contains, for
each filled hexagon of G, one of the three patterns described above, which implies that G[E1]
is 2-plane. We then color the edges of E′ with two colors, say green and red, so that each
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s(f)

t(f)

(a)

s(f)

t(f)

(b)

s(f)

t(f)

(c)

s(f)

t(f)

(d)

t(f)

s(f)

(e)

s(f)

t(f)

(f)

Figure 7: Illustration for Theorem 6. Red (respectively, green) edges are dashed (respectively,
dotted).

monochromatic set is a plane forest. The set of green edges will correspond to E2, while the set
of red edges to E3.

We compute an st-orientation of H(G) by choosing a pole of the outerface as vertex s. Recall
that each internal face f of H(G) has a source vertex s(f) and a target vertex t(f), and consists
of two directed paths from s(f) to t(f), say pl(f) and pr(f). The number of edges |pl(f)|, |pr(f)|
of the two paths is at most 5, and in particular |pl(f)|+ |pr(f)| = 6. We say that f is a face of
type i − j if |pl(f)| = i and |pr(f)| = j. Hence, in total there exist exactly five different types
of internal faces: 1 − 5, 5 − 1, 2 − 4, 4 − 2, 3 − 3; refer to Fig. 7. For the first two types of
faces we add to E′ the two or three chords of f in G that are incident to the target vertex t(f)
(i.e., we remove either pattern (α) or (γ)). In the type 1− 5 (respectively, 5− 1) we color these
edges red (respectively, green). For the types 2− 4 (respectively, 4− 2), we add to E′ the two or
three chords incident to the middle vertex of pl(f) (respectively, pr(f)), and we color them red
(respectively, green). For the type 3−3, we distinguish a set of cases based on the position of the
poles. Suppose first that the poles are s(f) and t(f), then we add to E′ the two chords incident
to t(f) (pattern (α)), and we color red (respectively, green) the chord incident to a vertex of
pr(f) (respectively, pl(f)); see Fig. 7(e). Otherwise, among the two possible Z-paths, there is
one that does not contain neither s(f) nor t(f) (pattern (β)), and we remove it; see Fig. 7(f).

We now claim that each monochromatic subgraph induced by the red and green edges is a
forest. We prove this claim for the red subgraph, symmetric arguments hold for the green one.
We orient the edges such that all red (respectively, green) edges are outgoing with respect to their
end-vertex belonging to pr(f) (respectively, pl(f)); note that there is always such an end-vertex.
This orientation implies that each vertex has at most one outgoing red edge, hence a cycle of
red edges would be actually a directed cycle. Consider the plane subgraph Gred of G containing
the oriented edges of H(G) and the oriented red edges. Since each red edge in a face f either
connects a vertex of pr(f) to a vertex of pl(f), or it is incident to t(f), a similar argument as
the one used in the proof of Theorem 2 shows that the orientation of Gred is an st-orientation,
and thus that there are no directed cycles.

It remains to select and color two chords of G from the outerface of H(G). As in the proof
of Theorem 2, there is neither a red nor a green edge incident to the vertex s of the outerface,
which is a pole by construction. We color red one of the two chords of the outerface incident
to s, and we color green the other one (i.e., we remove pattern (α) from the outerface). Since

12



the degree of s in the red (respectively, green) subgraph is equal to one, no cycle is created. An
example is shown in Fig. 1(b). Furthermore, the red (respectively, green) subgraph is simple,
because every vertex has at most one outgoing red edge (respectively, green edge) and thus two
parallel edges would form a cycle. Since an st-orientation can be computed in O(n) time, and
since G has O(n) faces and O(n) edges, the theorem follows.

5 Discussion and open problems

We studied edge partitions of 2-plane and 3-plane graphs. We proved that simple optimal 2-
plane graphs cannot be partitioned into a 1-plane graph and a forest, while an edge partition
with a 1-plane graph and two forests always exists. A natural question is whether the edges of a
(simple) optimal 2-plane graph can be partitioned into a plane graph and two forests. Moreover,
the problem of partitioning the edges of an optimal 3-plane graph into a 2-plane graph and a
forest is still open.

We showed that the edges of a simple optimal 2-plane graph G can be partitioned into a
1-plane graph and a plane graph with maximum vertex degree 12, or 8 if the pentangulation of
G does not contain separating triangles. On the other hand, there exist simple optimal 2-plane
graphs for which the plane graph of any such an edge partition has maximum vertex degree
at least 6. Reducing the gap between these two bounds on the vertex degree is an interesting
problem. Also, can we improve the time complexity of Theorem 4?

We conclude with a result that sheds some light on the structure of k-plane graphs, for any
k ≥ 2. While one can easily observe that every k-plane graph can be partitioned into a set of
k + 1 plane graphs, the next theorem shows a stronger property.

Theorem 7. Every n-vertex k-plane graph with k ≥ 2 has an edge partition 〈E1, E2〉, which can
be computed in O(k1.5n) time, such that G[E1] is a plane graph and G[E2] is a (k − 1)-plane
graph.

Proof. Let G = (V,E) be a k-plane graph, with k ≥ 2. We compute a maximal independent set
I of the crossing graph C(G) of G. Recall that a maximal independent set is also a dominating
set [5]. Consider now a partition 〈E1, E2〉 of E such that E2 contains the edges of G corresponding
to the vertices in I, while E1 contains all other edges of G. Since the vertices of I form an
independent set, the edges in E2 do not cross each other, and thus G[E2] is a plane graph. Also,
the vertices of I are a dominating set of C(G) and thus G[E1] is a graph such that each edge is
crossed at most k − 1 times, i.e., a (k − 1)-plane graph, as desired.

Since a maximal independent set can be computed in linear time in the number of edges of
C(G), and since a k-plane graph has O(k1.5n) crossings [22], the statement follows.

Acknowledgments. Research started at the 2017 GNV Workshop, held in Heiligkreuztal (Ger-
many). We wish to thank the organizers of the workshop and all the participants for the fruitful
atmosphere and the useful discussions.
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