
ar
X

iv
:1

80
7.

08
46

3v
2

 [
cs

.D
S]

 3
 A

ug
 2

01
8

ON MINIMUM CONNECTING TRANSITION SETS IN GRAPHS

THOMAS BELLITTO AND BENJAMIN BERGOUGNOUX

Abstract. A forbidden transition graph is a graph defined together with a
set of permitted transitions i.e. unordered pair of adjacent edges that one may
use consecutively in a walk in the graph. In this paper, we look for the smallest
set of transitions needed to be able to go from any vertex of the given graph to
any other. We prove that this problem is NP-hard and study approximation
algorithms. We develop theoretical tools that help to study this problem.

1. Introduction

Graphs are the model of choice to solve routing problems in all sorts of networks.
Depending on the applications, we sometimes need to express stronger constraints
than what the standard definitions allow for. Indeed, in many practical cases,
including optical networks, road networks or public transit systems among others,
the set of possible walks a user can take is much more complex than the set of walks
in a graph (see [1] or [2] for examples). To model a situation where a driver coming
from a given road may not turn left while both the road he comes from and the
road on the left exists, we have to define the permitted walks by taking into account
not only the edges of the graph that a walk may use but also the transitions. A
transition is a pair of adjacent edges and we call forbidden-transition graph a graph
defined together with a set of permitted transitions.

Graphs with forbidden transitions have appeared in the literature in [7] and
have received a lot of interest since, as well as other more specific models such as
properly colored paths [3, 4]. Many problems are harder in graphs with forbidden
transitions, such as determining the existence of an elementary path (a path that
does not use twice the same vertex) between two vertices which is a well-known
polynomial problem in graph without forbidden transitions and has been proved
NP-complete otherwise ([11]). Algorithms for this problem have been studied in
the general case [5] and also on some subclasses of graphs [6].

Forbidden transitions can also be used to measure the robustness of graph prop-
erties. In [10], Sudakov studies the Hamiltonicity of a graph with the idea that
even Hamiltonian graphs can be more or less strongly Hamiltonian (an Hamil-
tonian graph is a graph in which there exists an elementary cycle that uses all
the vertices). The number of transitions one needs to forbid for a graph to lose
its Hamiltonicity gives a measure of its robustness: if the smallest set of forbidden
transitions that makes a graph lose its Hamiltonicity has size 4, this means that this
graph can withstand the failure of three transitions, no matter where the failures
happen.

The notion we are interested in in this paper is not Hamiltonicity but connectivity
(the possibility to go from any vertex to any other), which is probably one of
the most important properties we expect from any communication or transport
network. However, our work differs from others in that we are not looking for
the minimum number of transitions to forbid to disconnect the graph but for the

This work is supported by French Agency for Research under the GraphEN project (ANR-15-
CE-0009).

1

http://arxiv.org/abs/1807.08463v2

minimum number of transitions to allow to keep the graph connected (the equivalent
of minimum spanning trees for transitions). In other words, we are looking for the
maximum number of transitions that can fail without disconnecting the graph,
provided we get to choose which transitions still work. This does not provide a
valid measure of the robustness of the network but measuring the robustness is
only one part (the definition of the objective function) of the problem of robust
network design. In most practical situations, robustness is achievable but comes
at a cost and the optimization problem consists in creating a network as robust
as possible for the minimum cost. In this respect, it makes sense to be able to
choose where the failure are less likely to happen. Our problem highlights which
transitions are the most important for the proper functioning of the network and
this is where special attention must be paid in its design or maintenance. As long
as those transitions work, connectivity is assured.

We also would like to point out that in practice, unusable transitions are not
always the result of a malfunction. Consider a train network and imagine that there
is a train going from a town A to a town B and one going from the town B to a
town C. In the associated graph, there is an edge from A to B and one from B
to C but if the second train leaves before the first one arrives, the transition is not
usable and this kind of situation is clearly unavoidable in practice even if no special
problem happens. Highlighting the most important transitions in the network thus
helps design the schedule, even before the question of robustness arises.

Unlike Hamiltonicity or the existence of elementary path between two vertices,
testing the connectivity is an easy task to perform even on graphs with forbidden
transitions (note that a walk connecting two vertices does not have to be elemen-
tary). However, we prove that the problem of determining the smallest set of
transitions that maintains the connectivity of the given graph is NP-hard even on
co-planar graph which is the main contribution of the paper (see Section 3). Other
notable contributions include a O(|V |2)-time 3

2 -approximation (Theorem 2.10) and
a reformulation of the problem (Theorem 2.5) which was of great help in the proofs
of the other results and could hopefully be useful again in subsequent works.
Definitions and notations. Throughout this paper, we only consider finite simple
graphs, i.e. undirected graphs with a finite number of vertices, no multiple edges
and no loop. Let G be a graph. The vertex set of G is denoted by V (G) and its
edge set by E(G). The size of a set S is denoted by |S|. We denote by d(v) the
degree of a vertex v.We write xy to denote an edge {x, y}. We define a walk in G
as a sequence W = (v1, . . . , vk) of vertices such that for all i 6 k−1, vivi+1 ∈ E(G)
and we say that W uses the edge vivi+1. Here, we say that the walk W leads from
the vertex v1 to vk.

For X ⊆ V (G), we denote by G[X] the subgraph of G induced by X . We also
denote by G−X the subgraph of G induced by V (G) \X . For x ∈ V (G), we write
G − x instead of G − {x}. We denote by G the complement of G i.e. the graph

such that V (G) = V (G) and E(G) = {xy ∈
(

V (G)
2

)

: xy /∈ E(G)}. We say that a

graph G is co-connected if and only if G is connected. We also call co-connected
components (or co-cc) of G the connected components of G.
Transitions. A transition is a set of two adjacent edges. We write abc for the
transition {ab, bc}. If a walk uses the edges ab and bc consecutively (with a 6= c),
we say that it uses the transition abc. For example, the walk (u, v, w, v, x) uses the
transitions uvw and wvx. Let T be a set of transitions of G and W = (v1 . . . vk) be
a walk on G. We say that W is T -compatible if and only if it only uses transitions
of T i.e. for all i ∈ [1, k − 2], we have vivi+1vi+2 ∈ T or vi = vi+2 (i.e. vivi+1

and vi+1vi+2 are the same edge). Observe that a walk consisting of two vertices is
always T -compatible. If for all vertices u and v of V (G), there exists a T -compatible

2

walk between u and v, then we say that G is T -connected and that T is a connecting
transition set of G. The problem we study here is the following:

Minimum Connecting Transition Set (MCTS)

Input: A connected graph G.
Output: A minimum connecting transition set of G.

2. Polynomial algorithms and structural results

In this section, we only consider graphs with at least 2 vertices. Our problem is
trivial otherwise.

Lemma 2.1. If G is a tree then a minimum connecting transition set of G has size

|V (G)| − 2.

Proof. We first prove that |V (G)| − 2 transitions are enough to connect G. For
every vertex v of G, we pick a neighbor of v that we call f(v). For every neigh-
bor u 6= f(v) of v, we allow the transition uvf(v). We end up with the transi-
tion set T = {uvf(v) : v ∈ V (G), u ∈ N(v) \ {f(v)}}. Let u and v be vertices
of G. Since G is connected, there exists a walk (u, u1, u2, . . . , uk, v). The walk
(u, u1, f(u1), u1, u2, f(u2), u2, . . . , uk, f(uk), uk, v) is T -compatible and still leads
from u to v. This proves thatG is T -connected. The size of T is |T | =

∑

v∈V (G)(d(v)−

1) = 2|E(G)| − |V (G)|. Since G is a tree, |E(G)| = |V (G)| − 1 and thus, |T | =
|V (G)| − 2.

Let us now prove by induction on the number n of vertices of G that at least
n − 2 transitions are necessary to connect G. This is obvious for n = 2. Let us
assume that it holds for n and let G be a tree with n + 1 vertices. Let T be a
minimum connecting transition set of G. Let uv be an internal edge of T if any
(i.e. an edge such that u and v are not leaves). Let a and b be two vertices from
different connected components of G − {u, v}. Every walk leading from a to b in
G therefore uses the edge uv and thus, two transitions containing uv. This proves
that every internal edge of T belongs to at least two transitions of T . If every edge
of G belongs to at least two transitions of T , T has size at least |E(G)| = |V (G)|−1
which concludes the proof. Otherwise, let uv be an edge that belongs to at most
one transition of T . This means that one of its vertices, say v, is a leaf. It is
straightforward to check that uv must belong to one transition of T , otherwise G
would not be T -connected. Let t be the transition in T containing uv. The graph
G−v is T \{t}-connected and is a tree. By the induction hypothesis, this means that
|T \ {t}| > n− 3 and |T | > n− 2. This concludes the proof of the lemma. � �

Let us also note that a linear-time algorithm to compute an optimal solution can
be easily deduced from this proof. Since every connected graph contains a spanning
tree, we have the following corollary.

Corollary 2.2. Every connected graph G has a connecting transition set of size

|V (G)| − 2.

Note however that in the general case, this bound is far from tight. The most
extreme case is the complete graph where every vertex can be connected to every
other with a walk of one edge, that therefore uses no transition. Thus, the empty
set is a connecting transition set of the complete graph. The following result aims
at tightening the upper bound on the size of the minimum connecting transition
set of a graph.

Theorem 2.3. Every connected graph G has a connecting transition set of size

τ(G) where

3

τ(G) =
∑

C co-cc of G
|C|>2

{

|C| − 2 if the subgraph of G induced by C is connected

|C| − 1 otherwise

Proof. By definition, if u and v belong to different co-connected components of
G, there is an edge uv ∈ E(G) and there is therefore a walk between u and v
is compatible with any transition set. We only have to find a transition set that
connects all the vertices that belong to the same co-connected component.

Let C be a co-connected component of G with at least 2 vertices. If G[C] is
connected, Corollary 2.2 provides a transition set of size |C| − 2 that connects C.
Otherwise, since G is connected, we know that V (G) 6= C and there exists a vertex
v /∈ C. Hence, v is adjacent to every vertex of C and C ∪ {v} induces a connected
subgraph of G. Corollary 2.2 provides a set of size |C ∪ {v}| − 2 = |C| − 1 that
connects C. By iterating this on every C, we build a connecting transition set T of
size τ(G). � �

Note that this bound can be computed in O(|V (G)|2). However, this bound is
still not tight. Let us consider the graph P7 whose vertex set is {v1, . . . , v7} and
where every vertex vi, 2 6 i 6 6 is connected to every vertex of the graph but vi−1

and vi+1. Since the graph is connected and co-connected, τ(P7) = 5 but the set
T = {v3v1v4, v2v4v1, v6v4v7, v5v7v4} is a connecting transition set of size only 4. To
better understand this solution, let us consider the spanning tree of P7 depicted in
Figure 1:

v3

v1

v4

v7

v5

v2 v6

Figure 1. A spanning tree of P7.

Note that the set T described above does not connect this spanning tree. Indeed,
one can not go from v1, v2 or v3 to v5, v6 or v7 using a T -compatible walk in the
tree. However, these vertices are already connected to each other by edges that do
not belong to the spanning tree. The optimal solution here does not consist in con-
necting a spanning tree of G but in connecting a spanning tree of G[{v1, v2, v3, v4}]
and one of G[{v4, v5, v6, v7}] and the cost is (4−2)+(4−2) = 4 instead of 7−2 = 5.

In fact, we will prove that to each optimal connecting transition set T of a
graph G corresponds an unique decomposition of G into subgraphs G1, G2, . . . , Gk

such that T is the disjoint union of T1, T2, . . . , Tk, where each Ti is the connecting
transition set of some spanning tree of Gi. Observe that the size of T is uniquely
determined by its correspondent decomposition, i.e., |T | = |V (G1)| − 2 + · · · +
|V (Gk)| − 2. Hence, finding an optimal connecting transition set is equivalent to
finding its correspondent decomposition. In the following, we reformulate MCTS
into this problem of graph decomposition which is easier to work with.

Definition 2.4. Connecting Hypergraph
Let G be a graph. A connecting hypergraph of G is a set H of subsets of V (G),

such that

• For all E ∈ H , we have G[E] is connected and |E| > 2.
• For all uv /∈ E(G), there exists E ∈ H such that u, v ∈ E (we say that the

hyperedge E connects u and v).
4

We define the problem of optimal connecting hypergraph as follows:

Optimal Connecting HyperGraph (OCHG)

Input: A connected graph G.
Output: A connecting hypergraphH that minimizes cost(H) =

∑

E∈H (|E| − 2).

In the next theorem, we prove that OCHG is a reformulation of MCTS.

Theorem 2.5. Let G be a graph.

• The size of a minimum connecting transition set of G is the same as the

cost of an optimal connecting hypergraph.

• A solution of one of these problems on G can be deduced in polynomial time

from a solution of the other.

Proof. Let G be a graph. This theorem is implied by the two following claims.

Claim 2.6. Let H = {E1, . . . , Ek} be a connecting hypergraph of G. There exists
a connecting transition set T of size at most cost(H).

By the definition of a connecting hypergraph, each Ei induces a connected graph
and by Corollary 2.2, there exists a subset of transitions Ti of size |Ei| − 2 such
that G[Ei] is Ti-connected. Let T =

⋃

i6k Ti. By definition, for all uv /∈ E(G),

there exists i such that u, v ∈ Ei. Since G[Ei] is Ti-connected and Ti ⊆ T , there
is a T -compatible walk between u and v in G which means that G is T -connected.
Since T =

⋃

i6k Ti, |T | 6
∑

i6k |Ti| =
∑

i6k(|Ei| − 2) = cost(H).

Claim 2.7. Let T be a connecting transition set of G. There exists a connecting
hypergraph H = {E1, . . . , Ek} of cost at most |T |.

Let ∼ be the relation on T such that t ∼ t′ if t and t′ share at least one common
edge. We denote by R the transitive closure of ∼. Let T1, . . . , Tk be the equivalence
classes of R. For all i 6 k, we denote by Ei the set of vertices induced by Ti. We
claim that the hypergraph {E1, . . . , Ek} is a connecting hypergraph and that, for
all i, |Ti| > |Ei| − 2.

By construction, for all i, we have |Ei| > 3 since Ti contains at least one transition
and thus, three vertices. Furthermore, since G is T -connected, there exists a T -
compatible walk W between every pair uv /∈ E(G). All the transitions that W uses
must be in T and are pairwise equivalent for R. Thus, for all uv /∈ E(G), there
exists i such that both u and v belong to Ei.

It remains to prove that for all i, |Ei| − 2 6 |Ti|. We prove by induction on n
that every set T of n pairwise equivalent transitions induces a vertex set of size at
most n + 2. This property trivially holds for n = 1. Now, suppose that it is true
for sets of size n and let T be a set of pairwise equivalent transitions of size n+ 1.
Let P = t1, . . . , tr be a maximal sequence of distinct transitions of T such that,
for all i 6 r − 1, ti ∼ ti+1. One can check that all the transitions of T \ {t1} are
still pairwise equivalent (otherwise, P would not be maximal). By the induction
hypothesis, T \{t1} induces at most n+2 vertices. Since t1 shares an edge (and thus
at least 2 vertices) with t2, it induces at most one vertex not induced by T \ {t1}.
Thus T induces at most n+ 3 vertices. � �

Let us note that the bound provided in Theorem 2.3 suggests a O(|V |2)-time
heuristic for OCHG which consists in building the set H as follows:

H =
⋃

C co-cc of G
|C|>2

{

C if the subgraph of G induced by C is connected

C ∪ {v} with v /∈ C otherwise

We use the reformulation given by Theorem 2.5 to generalize Lemma 2.1:
5

Lemma 2.8. If G has a cut vertex, then a minimum connecting transition set of

G has size |V (G)| − 2.

Proof. By Theorem 2.5, it is sufficient to prove that H = {V (G)} is an optimal
connecting hypergraph of G. Let p be a cut vertex of G and C1, . . . , Cr be the
connected components of G − p. Let H = {E1, . . . , Ek} be an optimal connecting
hypergraph of G.

Let a ∈ C1. Suppose that there are two vertices b, c 6= p that do not belong to
C1. Hence, {a, b} /∈ E(G) and there exists i such that a, b ∈ Ei. Since Ei must
induce a connected subgraph of G, we know that p ∈ Ei. Similarly, we know that
there exists Ej that contains a, c and p. Thus, we have |Ei ∩Ej | > |{a, p}| > 2 and
cost({Ei ∪Ej}) = |Ei ∪Ej | − 2 6 |Ei| − 2 + |Ej | − 2 = cost({Ei, Ej}).

Thus, H \ {Ei, Ej} ∪ {Ei ∪Ej} is also an optimal connecting hypergraph where
the same hyperedge contains both b and c. By iterating this process, we prove that
there is an optimal connecting hypergraph with one hyperedge E that contains a,
p and C2, . . . , Cr. This result trivially holds if there is only one vertex b 6= p that
does not belong in C1. By iterating the previous process on this hypergraph with
a vertex in E ∩C2 instead of a, we end up with the optimal connecting hypergraph
{V (G)} whose cost is n− 2. � �

The following lemma will help us to prove thatMCTS admits a 3
2 -approximation

and its NP-hardness. It proves that if the graph is co-connected, we can restrict
ourselves to some specific connecting hypergraph.

Lemma 2.9. Let G be a connected graph. If G is co-connected or G has a dom-

inating vertex x and G − x is connected and co-connected, then there exists an

optimal connecting hypergraph H = {E1, . . . , Ek} on G such that for all i, G[Ei] is
co-connected.

Proof. Let H be an optimal connecting hypergraph on G and let E be an hyperedge
of H that is not co-connected. If G[E] is complete, then E does not connect any
pair of non-adjacent vertices and H \E is still a connecting hypergraph whose cost
is less or equal than the cost of H . Else, let a and b be two non-adjacent vertices
of E. They therefore belong to the same co-connected component C of G[E].

If C is a co-connected component of G, then, since C (E (V (G), we know
that G is not co-connected and by hypothesis, it therefore has a dominating vertex
x and C = V (G) \ {x} and thus, E = V (G). Hence, cost(H) > |V (G)| − 2 which
is absurd since {V (G) \ {x}} is a connecting hypergraph of cost |V (G)| − 3.

Thus, C is not a co-connected component of G, which means that there exists
u ∈ C and v ∈ V (G) \ C such that u and v are not adjacent. To facilitate the
understanding, the construction we use in this case is illustrated in Figure 2. Since
C is a co-cc of G[E], we also know that v /∈ E. Hence, there exists E′ 6= E in H
that contains u and v. Let c1, . . . , cl be the connected components of G[C] that are
not connected to any vertex of E′ (if any). By definition of connecting hypergraph,
we know that for all i 6 l, there exists Ei ∈ H that connects a vertex of E′ and
a vertex of ci. We create H ′ from H by replacing E by E \ C and by replacing
E1, . . . , El and E′ by E = E′ ∪ C ∪ E1 ∪ · · · ∪ El.

We claim that cost(H ′) 6 cost(H)− 1. Indeed, replacing E by E \ C decreases
the cost by |C| while replacing E′ by E′ ∪ C increases the cost of at most |C| − 1
because E′∩C contains at least the vertex u. Moreover, we can prove by induction
on i 6 l that the cost of {E′ ∪C ∪E1 ∪ · · · ∪Ei−1, Ei} is greater or equal than the
cost of {E′ ∪ C ∪ E1 ∪ · · · ∪ Ei−1 ∪ Ei}. Indeed, (E′ ∪ C ∪ E1 ∪ · · · ∪ Ei−1) ∩ Ei

has size at least two (it contains at least one vertex in E′ and one in ci ⊂ C, by
definition of Ei). It follows that cost(E) 6 cost({E′ ∪ C,E1, . . . , El}). Therefore,
cost(H ′) 6 cost(H) − 1. Since H is an optimal connecting hypergraph, we know

6

E0

E2

E1

c1 c2

C

v

u

Figure 2. Here, G[C] has five connected components, two of
which (c1 and c2) are not connected to E′. To ensure that E

is connected, we need the hyperedges E1 and E2.

that H ′ is not a connecting hypergraph. But observe that H ′ satisfies the following
properties:

• Every pair of non-adjacent vertices is still connected by an hyperedge of
H ′. Indeed, if two non-adjacent vertices are connected by E in H they are
connected by E \ C or E in H ′ depending on whether they belonged to C
or not; if they are connected by an Ei in H , they are connected by E in H ′

and otherwise, the hyperedge that connects them in H belongs to H ′ too.
• The graph G[E] is connected. Indeed, the sets E′, E1, . . . , El all induce

connected subgraphs of G by definition and are connected to each other
because for all i, Ei ∩E′ 6= ∅. Furthermore, all the connected components
of C are connected to a vertex of E′, except the ci which are by definition
connected to the Ei.

Thus, either |E\C| < 2 orG[E\C] is not connected. If E\C is a singleton, it does
not connect any pair of non-adjacent vertices. Thus, H ′ \ {E \ C} is a connecting
hypergraph whose cost is strictly smaller than H , which is absurd. Hence, G[E \C]
is not connected, which means it is co-connected. We can therefore apply to E \C
the same method we used on C.

Just like before, we know that there exists two non-adjacent vertices u′ ∈ E \C
and v′ /∈ E. Let F ∈ H ′ be the hyperedge that connects u′ and v′, let d1, . . . , dl′ be
the connected components of E \C that are not connected to F and let F1, · · · , Fl′

be hyperedges of H ′ such that Fi connects a vertex of F to a vertex of di. We
create H ′′ from H ′ by removing E \ C and by replacing F1, . . . , Fl′ and F by
F = F ∪ (E \ C) ∪ F1 ∪ · · · ∪ Fl′ .

With the same arguments used for H ′, we can prove that F is connected and
that H ′′ connects every pair of non-adjacent vertices, which means that H ′′ is a
connecting hypergraph. Moreover, with these arguments, we can also prove that
cost(F) 6 cost({F ∪ (E \ C), F1, . . . , Fl′}). Furthermore, removing E \ C from
H ′ decreases the cost by |E \ C| − 2 and replacing F by F ∪ (E \ C) increases it
by at most |E \ C| − 1 since F ∩ (E \ C) contains at least the vertex u′. Hence,
cost(H ′′) 6 cost(H ′)+1 6 cost(H) and then H ′′ is an optimal covering hypergraph.
Observe thatH ′′ has strictly fewer hyperedges E such that G[E] is not co-connected
than H . We prove the lemma by iterating this process. � �

We now prove that MCTS has a polynomial 3
2 -approximation:

7

Theorem 2.10. For every connected graph G and optimal connecting transition

set T of G, the size of T is at least 2/3τ(G), where τ(G) is the function defined in

Theorem 2.3.

Proof. By Theorem 2.5, it is enough to prove that an optimal connecting hyper-
graph has cost at least 2/3τ(G). We start by proving the following claim which
proves the theorem on the graphs that are connected and co-connected.

Claim 2.11. Let G be a connected and co-connected graph with n vertices. For

every connecting hypergraph H of G, we have cost(H) > 2(n−1)
3 .

Proof. We know by Lemma 2.9 that there exists an optimal connecting hypergraph
H = {E1, . . . , Ek} of G such that for all i, G[Ei] is co-connected.

First, observe that cost(H) > 2k. Indeed, for every i, G[Ei] is both connected
and co-connected, thus we have |Ei| > 4. As cost(H) =

∑

i6k |Ei| − 2, we deduce

that cost(H) > 2k.
Now, we prove that cost(H) > n − k − 1. Observe that since G is connected,

every vertex v belongs to at least one edge in G. Hence, by definition of connecting
hypergraph, there exists E ∈ H such that v ∈ E and

⋃

i6kEi = V (G).
Also note that for all i < k, there exists an hyperedge Ej with j > i that shares a

vertex with an hyperedge of E1, . . . , Ei. Otherwise,
⋃

j6iEj and
⋃

j>i Ej cover the

vertices of G and since G is co-connected, this means that there exists u ∈
⋃

j6iEj

and v ∈
⋃

j>iEj such that (u, v) /∈ E(G) but no set of H connects them, which
is impossible. We can assume without loss of generality that this hyperedge that
shares at least one vertex with

⋃

j6iEj is Ei+1.

It is now immediate to prove by induction on i 6 k that
∑

j6i|Ej | − 2 >

|
⋃

j6iEj | − i− 1. Thus, we have cost(H) > n− k − 1.

By combining the two inequalities, we find that cost(H) > 2(n−1)
3 . � �

Let H = {E1, . . . , Ek} be an optimal connecting hypergraph of G, let C1, . . . , Cl

be the co-connected components of G and for all j 6 l, let vj be a vertex that does
not belong to Cj .

For all i 6 k and j 6 l such that |Ei ∩ Cj | > 2, we define

Ei,j =

{

Ei ∩ Cj if G[Ei ∩ Cj] is connected

Ei ∩ Cj ∪ {vj} otherwise

and we define F as the union of the {Ei,j}. Note that if G is co-connected, there is
only one co-connected component C1 = V (G) and while there is no vertex v1 /∈ C1,
for all i, G[Ei ∩C1] = G[Ei] is connected by definition, so we do not need v1 in the
above construction.

Since vj dominates Cj , it is easy to check that every hyperedge of F is connected
and has size at least 2. Plus, any two non-adjacent vertices of G belong to the same
Cj and are connected by an Ei ∈ H . Therefore, they belong to Ei ∩ Cj which has
size at least two and thus belongs to F . Hence, F is a connecting hypergraph.

Let Ei ∈ H and let Si be the set of values of j such that Ei,j exists. If there
is only one such value j, then cost(Ei) > cost(Ei,j) = cost(

⋃

j∈Si
{Ei,j}) follows

immediately. Otherwise

cost(
⋃

j∈Si

{Ei,j}) 6
∑

j∈Si

(|Ei ∩Cj |+ |{vj}| − 2) 6 |Ei| − |Si| 6 |Ei| − 2 = cost(Ei)

still holds. Since F =
⋃

i6k

⋃

j∈Si
{Ei,j}, it follows that cost(F) 6 cost(H) which

proves that F is optimal.
We know that two non-adjacent vertices necessarily belong to the same co-

connected component of G and since an hyperedge Ei,j only contains one vertex
8

that does not belong to Cj it only connects non-adjacent vertices of one connected
component. For all j, let Fj be the set of hyperedges of F that connect non-adjacent
vertices of Cj . Since Ei,j ⊆ Cj∪{vj}, Fj is a connecting hypergraph of G[Cj∪{vj}].

Let Cj be a co-connected component of G and observe that:

• if Cj is not connected, then vj is a cut vertex of Cj ∪ {vj}. Hence, by
Lemma 2.8, cost (Fj) 6 |Cj | − 1.

• if Cj is connected, since it is co-connected by definition, Cj ∪ {vj} admits
by Lemma 2.9 an optimal connecting hypergraph Hj such that for every
hyperedge E of Hj , G[E] is co-connected and thus, vj /∈ E. This proves
that Hj is a connecting hypergraph of G[Cj]. As G[Cj] is connected and

co-connected, we know by the above claim that cost(Hj) >
2(|Cj|−1)

3 .

Thus, we have

cost(F) =
∑

j6l

cost(Fj) >
∑

j6l







|Cj | − 1 if Cj is not connected

2(|Cj | − 2)

3
otherwise

>
2

3

∑

j6l

{

|Cj | − 1 if Cj is not connected

|Cj | − 2 otherwise

>
2

3
τ(G)

� �

We also can prove that this bound is tight. Indeed consider the graph G defined
as the complement of a star of n branches of 3 edges. The graph G has 3n + 1
vertices that we call c, vi,1, vi,2 and vi,3 with 1 6 i 6 n (in G, c is the center of
the star and vi,1, vi,2 and vi,3 are the three vertices of the branch i). Every vertex
of G is connected to every other except c and vi,1, vi,1 and vi,2 and vi,2 and vi,3
with 1 6 i 6 n. Since G is both connected and co-connected, our algorithm returns
the connecting hypergraph H1 = {V (G)} whose cost is 3n− 1 but the hypergraph
H2 = ∪16i6n{c, vi,1, vi,2, vi,3} is a connecting hypergrpah of cost 2n. The example
of co-P7 that we used to prove that the algorithm was not exact (see Figure 1) is
the case i = 2.

3. NP-hardness

In this section, we give a proof of NP-hardness of OCHG which involves very
dense graphs. Hence, we prefer to work with the complementary graphs and there-
fore prove the NP-hardness of the following problem that we call co-OCHG:

Definition 3.1. co-Connecting Hypergraph Let G be a graph. A co-connecting
hypergraph is a collection of hyperedges E1, . . . , Er ⊆ V (G) such that

• For all i 6 r, G[Ei] is co-connected and |Ei| > 2.
• For all uv ∈ E(G), there exists i such that u, v ∈ Ei (we say that the

hyperedge Ei covers the edge uv).

co-Optimal Connecting HyperGraph (co-OCHG)

Input: A co-connected graph G.
Output: A co-Connecting Hypergraph that minimizes cost(H) =
∑

E∈H (|E| − 2).

We prove the NP-hardness of this problem by reducing 3-SAT to it. We restrict
ourselves to the version of 3-SAT where each variable has at least one positive and

9

one negative occurrence and each clause has exactly 3 literals that are associated
to different variables. It is folklore that this restrictions of 3-SAT is NP-complete.

Let F = {c1, . . . , cm} be an instance of 3-SAT with n variables. We will con-
struct from F a graph GF such that F is satisfiable if and only if GF admits a
co-covering hypergraph of cost 25m.

We start by describing how to construct GF . To simplify the construction and
the proofs, we give labels to some vertices and some edges. The set of labels we use
are {ci, Ti,x, Fi,x : i 6 m, x variable of F}. For each clause ci and each variable
x occurring in ci, we create the gadget g(x, ci). If x occurs positively in ci then
g(x, ci) is the graph depicted in Figure 3a, otherwise, if x occurs negatively in ci
then g(x, ci) is the graph depicted in Figure 3b. Each gadget g(x, ci) contains a
vertex labelled ci and two edges labelled Ti,x and Fi,x.

Fi,x Ti,x

ci

(a) The gadget g(x, ci) if x appears in ci.

Fi,x Ti,x

ci

(b) The gadget g(x, ci) if x appears in ci.

Figure 3

We then create a new vertex for each clause ci that we connect to the three
vertices labelled ci and to an additional vertex of degree 1. We thus have for each
clause a graph like the one depicted in Figure 4 that we call g(ci).

Fi,x Ti,x

ci
Ti,z

Fi,z

ci

Fi,y

Ti,y

ci

g(x, ci)

g(y, ci)g(z, ci)

Figure 4. The clause-gadget associated to the clause ci = (x ∨
¬y ∨ ¬z).

Finally, for each variable x, we do the following. Let ci1 , . . . , ciℓ be the clause
where x appears. Observe that ℓ > 2 since every variable has a positive and a
negative occurrence. For each j 6 ℓ, we merge the edge labelled Tij ,x in g(x, cij)
with the edge labelled Fik,x in g(x, cik) (where k = j + 1 mod ℓ) such that the
resulting edge has an extremity of degree one. We consider that this edge has both
Tij ,x and Fik,x as labels. For example, if a variable x appears positively in the
clauses c1 and c4 and negatively in the clause c3, the Figure 5 depicts what the
graph looks like around the gadget associated to the variable x.

10

F1,x

T4,x

T1,x

F3,x

F4,x

T3,x

c1

c3

c4

Figure 5. The gadgets associated to the variable x.

By connecting all the gadgets g(x, ci) as described above, we obtain the gadget
graph GF . We may assume that GF is connected. Otherwise, this means that F is
the conjunction of two formulas that share no common variables and F is satisfiable
if and only if those two formulas are. Observe that GF is trivially co-connected.
Moreover, the size of GF is polynomial in n and m.

Now, we prove that F is satisfiable if and only if GF admits a co-covering
hypergraph of cost 25m. We start with the following lemma which proves the
existence of an optimal co-covering hypergraph where every hyperedge is contained
in the vertex set of some clause-gadget.

Lemma 3.2. There exists an optimal co-connecting hypergraph H of GF such that

H = H1 ∪H2 ∪ · · · ∪Hm and for all i 6 m, we have V (Hi) ⊆ V (g(ci)).

Proof. In the graph GF , the intersection between two clause-gadgets only contains
labelled edges. Thus, if an hyperedge E is not included in any clause-gadget,
it means that E covers at least two non-labelled edges from two distinct clause-
gadgets. The Figure 6 depicts what we call the junction between two clause-gadgets
and names the vertices of interest in this proof. Here, the clause-gadget g(c1)
contains the vertices v0, v1, v2 and v3 and g(c2) contains v2, v3, v4 and v5.

F1,xT2,x

v0 v1 v2 v4 v5

v3c1 c2

Figure 6. The junction between the clause-gadgets of c1 and c2.

Since GF is connected and co-connected, we know by Lemma 2.9 that it admits
an optimal co-connecting hypergraph H = {E1, . . . , Ek} such that for all i, GF [Ei]
is connected. The only way for an hyperedge Ei, such that GF [Ei] is connected, to

11

cover non-labelled edges in several clause-gadgets is to contain the vertices labelled
v1, v2 and v4 at the junction between two clause-gadgets. In this case, we say that
Ei covers the junction between these two gadgets. Let us assume that an hyperedge
Ei covers the junction between two clause-gadgets g(c1) and g(c2). We make no
assumption on whether x appears positively or negatively in c1 and c2.

By definition, Ei contains the vertices v1, v2 and v4. If Ei does not contain v3,
there exists an hyperedge Ej that covers the edge {v2, v3} has to contain at least
one of v1 and v4 (in order to induce a connected and co-connected subgraph of GF)
and therefore shares at least two common vertices with Ei. This means that we
can merge Ei and Ej without increasing the cost of the solution and thus, we can
assume that Ei contains v3. However, GF [{v1, v2, v3, v4}] is still not co-connected
and Ei has to contain other vertices. By connectivity, Ei must contain at least one
of v0 and v5.

• If Ei contains only one of {v0, v5}, say v0, we remove v4 from Ei and add
v2 to the hyperedge Ej that covers {v4, v5}. The hyperedges Ei and Ej

still induce co-connected subgraphs of GF , cover the same edges as before
and the cost of H does not increase.

• If GF [Ei \ {v2, v3}] is connected, we replace Ei in the solution by the
hyperedges F1 = {v0, v1, v2, v3} and F2 = Ei \ {v1, v3}. The hyperedges
F1 and F2 have the same cost as Ei and cover the same edges, GF [F1] is

co-connected and so is GF [F2] (all the vertices are adjacent to v2 in GF [F2]
except v4 that can be connected to v2 through v0) . Let us also note that
both GF [F1] and GF [F2] are connected.

• If Ei contains both v0 and v5 but GF [Ei \ {v2, v3}] is not connected, we
know it has two connected components C1 and C2 (since removing a vertex
set of degree k cannot create more than k connected components). We
replace Ei by F1 = {v2, v3} ∪ C1 and F2 = {v2, v3} ∪ C2. The hyperedges
F1 and F2 have the same cost as Ei and cover the same edges. Furthermore,
both GF [F1] and GF [F2] are connected since every vertex is adjacent to
v3 except v2 that can be connected to v3 through v0 and v5 in C1 and C2.
We also notice that GF [F1] and GF [F2] are both connected.

In any case, we can build an optimal co-connecting hypergraph where GF [Ei] is
still connected for all i and the hyperedges cover strictly fewer junctions. We can
iterate this process until H satisfies the lemma. � �

Let H = H1 ∪ · · · ∪Hm be an optimal co-connecting hypergraph of G such that
for all i 6 m, we have V (Hi) ⊆ V (g(ci)).

Observe that the labelled edges are the only edges of GF to belong to several
clause-gadgets. Thus, for each i 6 m, the non-labelled edges of g(ci) must be
covered by Hi. Consequently, the cost of Hi is fully determined by which labelled
edges of g(ci) it covers. We want to prove that GF is satisfiable if and only if the
labelled edges can be covered in a way such that each Hj has cost 25.

Let ci be a clause of F and let us study the cost of Hi in function of which
labelled edges it covers. Let x be a variable of ci. We recall that the gadget g(x, ci)
differs depending on whether x appears positively or negatively in ci but in both
cases, the gadget has an edge labelled Fi,x and one labelled Ti,x. The subgraph
of g(x, ci) induced by Hi can take four values (up to isomorphims) depending on
which of the following situations occurs:

• Hi covers neither Ti,x nor Fi,x. We call this configuration N (for “none”).
• Hi covers both Ti,x and Fi,x. We call this configuration B (for “both”).
• Hi covers Ti,x and x appears positively in ci orHi covers Fi,x and x appears
negatively in ci. We call this configuration S (for “satisfied”).

12

• Hi covers Ti,x and x appears negatively in ci orHi covers Fi,x and x appears
positively in ci. We call this configuration U (for “unsatisfied”).

Hence, the edges that Hi covers are determined (up to isomorphism) by the con-
figurations encountered for each of the three variables that appear in ci. Since the
clause-gadget is symmetric, the order does not matter: the configuration SUN is
exactly the same as the configuration NSU . Thus, we find that Hi can cover 20
different sets of edges up to isomorphisms. We determined the optimal values of
cost(Hi) for each case via a computer-assisted exhaustive search. The results are
the following:

Configuration Minimal cost conf. min. conf. min. conf. min.
BBB 28 BUS 26 UUU 26 UNN 25
BBU 27 BUN 26 UUS 25 SSS 25
BBS 27 BSS 26 UUN 25 SSN 25
BBN 27 BSN 26 USS 25 SNN 25
BUU 26 BNN 26 USN 25 NNN 25

The first observation we make is that the optimal value of cost(Hi) is necessarily
at least 25 and an optimal co-connecting hypergraph on GF therefore always costs
at least 25m. We now investigate the case where the optimal cost is exactly 25m.
To this end, we suppose that H has a cost of 25m.

We note that every configuration that contains a B costs at least 26. Thus, we
know that for each Hi and each x appearing in ci, Hi covers at most one of the two
labelled edges of g(x, ci).

Let us now look at the gadgets associated to a variable x that appears in ℓ clauses
(cf. Figure 5). For all j such that x appears in cj , the hypergraph Hj either covers
the two labelled edges of g(x, cj) (B), one (S or U) or none (N). Since every edge
must be covered at least once, this means that a solution where no configuration
involves B also does not feature a configuration involving N . Hence, for every Hi,
the only configurations that occur are S and U .

Let us suppose that Hi covers the edge Ti,x. Since the configuration B is im-
possible, we know that Hi does not cover the edge Fi,x. Let Tj,x the other label
of the edge Fi,x. Since this edge has to be covered, this means that Hj must cover
the edge Tj,x and because the configuration B is impossible, it cannot cover the
edge Fj,x. We can prove by induction that for each variable x either, for all gadget
g(x, ci), Hi covers the edge Ti,x or for all gadget g(x, ci), Hi covers the edge Fi,x.
In the first case, we say that the variable x is set to True, and in the second case,
to False. If the variable x is set to True, this means all its positive occurrence will
lead to a S configuration in the clause where it appears and conversely.

Finally, we notice that the cost of an optimal co-connecting hypergraph on the
configurations SSS, SSU and SUU is 25 while it is 26 on the configuration UUU .
Therefore, there exists a solution of cost 25m if and only of there exists a way to
affect all the variables to either True or False such that every clause is satisfied by
at least one variable, which comes down to saying that the formula F is satisfiable.

This proves that co-OCGH and therefore OCGH and MCTS are all NP-
hard. Moreover, Lichtenstein proved in [8] that 3-SAT remains NP-complete when
restricted to formulas whose incidence graph is planar. The incidence graph of a
formula F is the bipartite graph representing the relation of belonging between the
variables and the clauses of F . Clearly, if the incidence graph of F is planar then
GF is planar too. We conclude that MCTS is NP-hard even on co-planar graphs.

13

Conclusion

Our work proves that finding a minimum connecting transition set is NP-hard
even on co-planar graphs. This notably implies the NP-hardness of other problems
that generalizes this one such as finding a minimum connecting transition set in a
graph that already has forbidden transitions.

A lot of our results suggest that the density of the graph has an impact on the
complexity of MCTS. Consequently, it would be interesting to study the complex-
ity of this problem on sparse graphs such as planar graphs or graphs with bounded
treewith.

Further works could lead us to generalize this study to directed graphs, that are
more suitable for many practical applications. Another interesting continuation
of this work would also be the study of low-stretch connecting transition sets, a
problem that is already well-studied for minimal spanning trees [9]. Intuitively, it
consists in looking for a subset of transitions T such that the shortest T -compatible
path between two vertices is not much longer than the shortest path in the graph
with no forbidden transitions, which is also an important criteria of robustness.

Acknowledgments

The authors would like to thank Marthe Bonamy, Mamadou M. Kanté, Arnaud
Pêcher, Théo Pierron and Xuding Zhu for the interest they showed for our work
and for inspiring discussions.

References

[1] Mustaq Ahmed and Anna Lubiw. Shortest paths avoiding forbidden subpaths. In 26th Inter-

national Symposium on Theoretical Aspects of Computer Science, STACS 2009, February

26-28, 2009, Freiburg, Germany, Proceedings, pages 63–74, 2009.
[2] Thomas Bellitto. Separating codes and traffic monitoring. Theoretical Computer Science,

2017.
[3] C. C. Chen and David E. Daykin. Graphs with hamiltonian cycles having adjacent lines

different colors. J. Comb. Theory, Ser. B, 21(2):135–139, 1976.
[4] Gregory Gutin and Eun Jung Kim. Properly coloured cycles and paths: Results and open

problems. In Graph Theory, Computational Intelligence and Thought, Essays Dedicated to

Martin Charles Golumbic on the Occasion of His 60th Birthday, pages 200–208, 2009.
[5] Mamadou Moustapha Kanté, Christian Laforest, and Benjamin Momège. An exact algorithm

to check the existence of (elementary) paths and a generalisation of the cut problem in graphs
with forbidden transitions. In SOFSEM 2013: Theory and Practice of Computer Science,

39th International Conference on Current Trends in Theory and Practice of Computer Sci-

ence, Špindler̊uv Mlýn, Czech Republic, January 26-31, 2013. Proceedings, pages 257–267,
2013.

[6] Mamadou Moustapha Kanté, Fatima Zahra Moataz, Benjamin Momège, and Nicolas Nisse.
Finding paths in grids with forbidden transitions. In Graph-Theoretic Concepts in Computer

Science - 41st International Workshop, WG 2015, Garching, Germany, June 17-19, 2015,

Revised Papers, pages 154–168, 2015.
[7] Anton Kotzig. Moves without forbidden transitions in a graph. Matematický časopis,

18(1):76–80, 1968.
[8] David Lichtenstein. Planar formulae and their uses. SIAM J. Comput., 11(2):329–343, 1982.
[9] David Peleg. Low stretch spanning trees. In Mathematical Foundations of Computer Science

2002, 27th International Symposium, MFCS 2002, Warsaw, Poland, August 26-30, 2002,

Proceedings, pages 68–80, 2002.
[10] Benny Sudakov. Robustness of graph properties. arXiv, 2016.
[11] Stefan Szeider. Finding paths in graphs avoiding forbidden transitions. Discrete Applied

Mathematics, 126(2-3):261–273, 2003.

Université de Bordeaux, LABRI, CNRS, France
E-mail address: thomas.bellitto@u-bordeaux.fr

Université Clermont Auvergne, LIMOS, CNRS, France
E-mail address: benjamin.bergougnoux@gmail.com

14

	1. Introduction
	2. Polynomial algorithms and structural results
	3. NP-hardness
	Conclusion
	Acknowledgments
	References

