Skip to main content

A Note on the Entropy of Computation

  • Chapter
  • First Online:
  • 410 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11270))

Abstract

In this note a computation is considered as a special dynamics in a space of events (sets of possible states). In this perspective, it turns out that computations are anti-entropic processes. This point of view is compared with well-known results about the energetic aspects of computations, by discussing perspectives that could be of interest and relevance in many models of natural computing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    Article  MathSciNet  Google Scholar 

  2. Bennett, C.H.: Notes on the history of reversible computation. IBM J. Res. Dev. 32(1), 16–23 (1988)

    Article  MathSciNet  Google Scholar 

  3. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput. 18, 766–776 (1989)

    Article  MathSciNet  Google Scholar 

  4. Bennett, C.H.: Notes on Landauer’s principle, reversible computation, and Maxwell’s Demon. Stud. Hist. Philos. Mod. Phys. 34, 501–510 (2003)

    Article  MathSciNet  Google Scholar 

  5. Bérut, A.: Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012)

    Article  Google Scholar 

  6. Boltzmann, L., Weitere Studien uber das Wärmegleichgewicht unter Gasmolekulen, Sitzungsber. Kais. Akad. Wiss. Wien Math. Naturwiss. Classe 66, 275–370 (1872)

    Google Scholar 

  7. Bonnici, V., Manca, V.: Informational laws of genome structures. Sci. Rep. 6 (2016). Article no. 28840. http://www.nature.com/articles/srep28840

  8. Brillouin, L.: Scienze and Information Theory. Academic Press Inc., New York (1956)

    MATH  Google Scholar 

  9. Brush, S.G., Hall, N.S. (eds.): The Kinetic Theory of Gases. An Anthology of Classical Papers with Historical Commentary. Imperial College Press, London (2003)

    Google Scholar 

  10. Calude, C.S.: Information and Randomness: An algorithmic Perspective. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-662-03049-3

    Book  MATH  Google Scholar 

  11. Carnot, S.: Reflections on the Motive Power of Heat (English Translation from French Edition of 1824, with Introduction by Lord Kelvin). Wiley, New York (1890)

    Google Scholar 

  12. Ciobanu, G., Păun, G., Pérez-Jiménez, M.J.: Applications of Membrane Computing. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29937-8

    Book  Google Scholar 

  13. Cover, T., Thomas, C.: Information Theory. Wiley, New York (1991)

    MATH  Google Scholar 

  14. Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley, New York (1968)

    MATH  Google Scholar 

  15. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 33(5), 620–630 (1957)

    Article  MathSciNet  Google Scholar 

  16. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)

    Article  MathSciNet  Google Scholar 

  17. Landauer, R.: Dissipation and noise immunity in computation and communication. Nature 335, 779–784 (1988)

    Article  Google Scholar 

  18. Lloyd, S.: Ultimate physical limits to computation. Nature 406, 1047–1054 (2000)

    Article  Google Scholar 

  19. Manca, V.: Infobiotics: Information in Biotic Systems. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36223-1

    Book  MATH  Google Scholar 

  20. Manca, V.: Grammars for discrete dynamics. In: Holzinger, A. (ed.) Machine Learning for Health Informatics: State-of-the-Art and Future Challenges. LNCS (LNAI), vol. 9605, pp. 37–58. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50478-0_3

    Chapter  Google Scholar 

  21. Manca, V.: The principles of informational genomics. Theor. Comput. Sci. 701, 190–202 (2017)

    Article  MathSciNet  Google Scholar 

  22. Manca, V.: An informational proof of H-theorem. Open Access Libr. (Mod. Phys.) 4, e3396 (2017)

    Google Scholar 

  23. Martínez-del-Amor, M.A., Riscos-Núñez, A., Pérez-Jiménez, M.J.: A survey of parallel simulation of P systems with GPUs. Bull. Int. Membr. Comput. Soc. 3, 55–67 (2017)

    Google Scholar 

  24. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Inc., Englewood Cliffs (1967)

    MATH  Google Scholar 

  25. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  26. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  27. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  28. Shannon, C.E.: A universal turing machine with two internal states. In: Automata Studies, Annals of Mathematics Studies, vol. 34, pp. 157–165, Princeton University Press (1956)

    Google Scholar 

  29. Sharp, K., Matschinsky, F.: Translation of Ludwig Boltzmann’s paper “on the relationship between the second fundamental theorem of the mechanical theory of heat and probability calculations regarding the conditions for thermal equilibrium”. Entropy 17, 1971–2009 (2015)

    Article  MathSciNet  Google Scholar 

  30. Schrödinger, E.: What Is Life? The Physical Aspect of the Living Cell and Mind. Cambridge University Press, Cambridge (1944)

    MATH  Google Scholar 

  31. Schervish, M.J.: Theory of Statistics. Springer, New York (1995). https://doi.org/10.1007/978-1-4612-4250-5

    Book  MATH  Google Scholar 

  32. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc. 42(1), 230–265 (1936)

    Article  MathSciNet  Google Scholar 

  33. Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del-Amor, M.A., Riscos-Núñez, A., Pérez-Jiménez, M.J.: Cooperation in transport of chemical substances: a complexity approach within membrane computing. Fundam. Inform. 154, 373–385 (2017)

    Article  MathSciNet  Google Scholar 

  34. Wheeler, J.A.: Information, physics, quantum: the search for links. In: Zurek, W.H. (ed.) Complexity, Entropy, and the Physics of Information. Addison-Wesley, Redwood City (1990)

    Google Scholar 

  35. Wiener, N.: Cybernetics or Control and Communication in the Animal and the Machine. Hermann, Paris (1948)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Manca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manca, V. (2018). A Note on the Entropy of Computation. In: Graciani, C., Riscos-Núñez, A., Păun, G., Rozenberg, G., Salomaa, A. (eds) Enjoying Natural Computing. Lecture Notes in Computer Science(), vol 11270. Springer, Cham. https://doi.org/10.1007/978-3-030-00265-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00265-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00264-0

  • Online ISBN: 978-3-030-00265-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics