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Institute for Distributed Systems, Ulm University, Ulm, Germany
{felix.engelmann,frank.kargl,christoph.boesch}@uni-ulm.de

Abstract. Privacy in block-chains is considered second to functionality,
but a vital requirement for many new applications, e.g., in the industrial
environment. We propose a novel transaction type, which enables pri-
vacy preserving trading of independent assets on a common block-chain.
This is achieved by extending the ring confidential transaction with an
additional commitment to a colour and a publicly verifiable proof of
conservation. With our coloured confidential ring signatures, new token
types can be introduced and transferred by any participant using the
same sized anonymity set as single-token privacy aware block-chains.
Thereby, our system facilitates tracking assets on an immutable ledger
without compromising the confidentiality of transactions.

Keywords: Coloured Coins · Privacy · Confidential Ring Signature ·
Commitments.

1 Introduction

Trading is a basic human trait that extends to the digital world. Individual
trading without the need of intermediaries is enabled by block-chain technology.
Participants of a block-chain reach a global consensus on which trades are valid
and in which order. To achieve this, all transactions must be validated by peers
and checked for violations of conservation rules, e.g., creating an asset out of
thin air. The basic approach is to use plain-text transaction receipts, visible for
everyone which makes validation of the transactions straightforward.

The issue with these plain-text receipts is, that trades often include valuable
information for other parties, using the knowledge for their leverage. Indepen-
dent research [6,9] realised, that privacy in block-chain systems is important to
support the same features as analogue trades. Monero therefore introduced ring
confidential transactions to hide the sender identity (using ring signatures), the
recipient identity (using one-time payment addresses), and the amount trans-
ferred (using commitments) from the public, while maintaining the possibility
to verify the conservation. The real sender is indistinguishably concealed within
a set of decoys. To prove ownership of an asset, which is attached to a public key,
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a ring signature is used instead of a regular digital signature. The verifier of a
ring signature can check that the signer knows at least one of the corresponding
private keys, but not which one. To prevent double spending of the same asset,
the ring signature has to include a specific tag, which stores the identity of the
signer in an encrypted form. If two signatures have the same tag, they can be
linked and the second signature is invalid. Thus, no two assets can belong to the
same public key. This requirement demands for one-time recipient addresses,
which, in addition, serve the purpose of hiding the recipient from the public.
Therefore, a one-time key is derived from the long-term recipient public key, for
which only the recipient can derive the correct one-time private key. These one-
time addresses prevent multiple transaction outputs to be linked to a common
owner. This works well, if all transaction inputs are of equal value. However,
transaction inputs with different values, still allow for deducing the real sender
by comparing the transaction in- and outputs. In order to prevent this kind
of sender derivation and to add privacy, the transaction value is hidden inside
a commitment. Additively homomorphic Pedersen commitments [7] allow the
sender to prove that the input minus the output of a transaction is zero, thereby
proving the conservation without disclosing the amount. A detailed description
of the techniques used is summarised by Alonso et al. [1].

The added privacy compared to fully visible transaction receipts restricts
features, such as Turing complete smart contracts, which are common on non-
privacy aware block-chains. Smart contracts are recipients, whose behaviour is
governed by code. A prominent use-case of smart contracts is the management of
tokens. These tokens can be sub-currencies or used to track assets independent
of the block-chain’s native currency.

In this paper, we introduce an extension to the ring confidential transac-
tion to support sub-currencies with the benefit of privacy aware trading. Our
construction features multiple coexisting asset types, also known as colours. A
transaction can transfer exactly one colour, but the decoy inputs can be from
any colour, having the same anonymity set as single-colour privacy aware block-
chains. The colour of the transaction is only known to the interacting parties (
sender and recipient of the current transaction), but not to anyone else, achieving
a fully privacy aware verification of colour conservation from inputs to outputs.

With the help of our new transaction type, all participants of the block-chain
can introduce new token types for their own purposes. The consensus verifies that
a new colour does not yet exist to prevent unauthorised issuance of existing to-
kens. All the new tokens will benefit from the privacy aware transactions without
the barrier of creating an independent chain per colour. A new block-chain per
colour reduces the opportunities for decoys in a transaction which negatively
impacts the privacy of the whole system. On top, multiple colours on a single
block-chain facilitate future on-chain atomic swap operations between colours.
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2 Preliminaries

Our contribution extends the ring confidential transaction (ringCT), which is
prominently used in Monero for the RCTTypeFull, to support a colour attribute
for in- and outputs of a transaction. In this section, we describe the required
building blocks, an additively homomorphic commitment scheme and a linkable
ring signature, which are the same as for the ringCT. In addition to this, a
full ringCT requires range proofs, but as our extension does not require an
adaptation thereof, we refer the reader to the work of Noether et al. [6] for the
full construction.

We use elliptic curve cryptography for our commitments and signatures. An
elliptic curve is a group with the possibility to add an element, also called point,
to another or itself resulting in a new point on the curve. This allows for the
multiplication of a scalar x to a point. A curve standardises a base point G,
which is the generator of a preferably large subgroup. Elliptic curves are suited
for cryptography, as calculating x given P = xG is hard, known as the discrete
logarithm problem. This property can be used to generate private-public key
pairs (sk = x, pk = xG).

2.1 Pedersen commitments

To hide a value a in an Elliptic Curve Pedersen commitment [7] requires two
points, where one can be the base point G and the second point H = ψG
must be created, such that ψ is unknown to anyone. A nothing up my sleve

generation of H can be generated by hashing the base point with a hash function
H mapping from a point to another point with H = H(G). G and H are the
public parameters of the given system. To build a commitment to a value a, a
secret, random blinding factor x is generated and then combined to

C(a, x) = xG+ aH.

Pedersen commitments are perfectly hiding and computationally binding under
the discrete logarithm assumption. A commitment C(0, x) = xG is binding but
not hiding. By publishing the point C(a, x), the sender commits to the value
a, and can only change the choice by brute-force searching for a different pair
x′, a′ satisfying C(a, x) = xG + aH = x′G + a′H which has a negligible chance
of success.

The Pederson commitment has the desirable property, that finding the value
y with C(a, x) = yG for a 6= 0 and x 6= 0 is difficult according to the discrete
logarithm problem. However, given that a = 0, the commitment is reduced to
C(0, x) = xG + 0H = xG. Then the private key to the committed point is x
which is used to sign the commitment and thus proving knowledge of x.

An additional feature of the commitments are their homomorphicity in regard
to addition. Three commitments C1(5, x1), C2(3, x2), C3(2, x3) can be summed
together like C1−(C2+C3) = x1G+5H−(x2G+3H+x3G+2H) = (x1−x2−x3)G
resulting in a commitment to zero C0 with secret key x1 − x2 − x3. Whoever
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can sign the sum of the commitments proves knowledge of all the components
and proves that the sum of values is 0. For values which should be in plain-text,
but which are needed to perform calculations, a commitment can be opened, by
immediately disclosing a and x.

2.2 Multilayered Linkable Spontaneous Ad-hoc Group Signature

The second building block we require for our colour extension is the Multilayered
Linkable Spontaneous Ad-Hoc Group Signature (MLSAG). This is a modifica-
tion of the Fujisaki-Suzuki (FS) [3] and the Liu-Wei-Wong (LWW) [4] signatures
to increase their space efficiency. It provides a signature where the signer can
prove knowledge of a set of private keys which are embedded in a larger set of
decoys. The verifier can not deduce for which subset the signer knows the private
keys. If any one of the private keys is reused, the two resulting signatures can
be linked together, preventing double spending of a single output. The keygen,
sign, verify and link algorithms are described according to Noether et al. [6].

(P j , xj)← ML.Keygen(1λ): Generate a vector of m private keys xi for i =
1, . . . ,m with the corresponding public keys P i = xiG.

(P j
i , Ij)←ML.Keyselect(P j): Select a set of n− 1 vectors, each containing m

public keys {P j
i }

j=1,...,m
i=1,...,n from other users. For a secret index π, correspond-

ing to the signer, all the secret keys xj must be known, such that xjG = P j
π

and let Ij = xjH(P
j
π) for j = 1, . . . ,m.

σ ←ML.Sign(m, P j
i , xj , Ij): Let m be the message to sign. For j = 1, . . . ,m and

i = 1, . . . , π − 1, π + 1, . . . , n draw sji and αj as secure, random scalars. With
a hash function h : {0, 1}∗ → Zq, compute Lj

π = αjG and Rj
π = αjH(P

j
π)

for j = 1, . . . ,m. Continue with the vector i = π + 1 as

cπ+1 = h(m, L1
π, R

1
π, . . . , L

m
π , R

m
π )

Lj
π+1 = sjπ+1G+ cπ+1P

j
π+1 and Rj

π+1 = sjπ+1H(P
j
π+1) + cπ+1Ij

and calculate L and R for each increment of i mod n until i = π − 1 like

cπ−1 = h(m, L1
π−2, R

1
π−2, . . . , L

m
π−2, R

m
π−2)

Lj
π−1 = sjπ−1G+ cπ−1P

j
π−1 and Rj

π−1 = sjπ−1H(P
j
π−1) + cπ−1Ij .

Given cπ = h(m, L1
π−1, R

1
π−1, . . . , L

m
π−1, R

m
π−1), we calculate sjπ with αj =

sjπ + cπxj mod l (modulus curve order l) and the output consists of

σ = (c1, s
1
1, . . . , s

m
1 , s

1
2, . . . , s

m
2 , . . . , s

1
n, . . . , s

m
n , I1, . . . , Im). (1)

0/1←ML.Verify(m, σ, P j
i ): Starting with i = 1 and c1, calculate L

j
i and R

j
i for

all i and j. If cn+1 = c1, the signature is valid and 1 is returned, 0 otherwise.
0/1←ML.Link(σ, σ′): If the signatures σ and σ′ share an Ij , they used the

same private key xj in the signing process and 1 is returned, 0 otherwise.
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The MLSAG signature scheme must satisfy the the following correctness condi-
tions: For every λ,m ∈ N, every n ∈ N\{1}, every (P j , xj)←ML.Keygen(1λ),
and every m, it holds with high probability that

ML.Verify(m, σ ←ML.Sign(m, P j
i ←ML.Keyselect(P j), xj , Ij), P

j
i ) = 1.

The MLSAG satisfies the following security properties which are proven in the
original LWW signature description [4] and the construction by Noether et al. [6]:

– Unforgeability: negligible probability of producing a valid signature without
knowledge of all private keys in one vector.

– Linkability: negligible probability of being able to produce two different sig-
natures using the same private key in both.

– Signer Ambiguity: negligible additional probability of guessing the secret
index, even by knowing private keys of decoy inputs.

3 Our Coloured Ring Confidential Transaction

Having explained the necessary building blocks, we proceed with a detailed de-
scription of the RCTTypeFull ringCT and highlighted the additional elements
required for our extension in red.

In- and Outputs. Our transaction requires inputs, which are outputs of pre-
vious transactions. The sender selects m inputs to be used. Depending on how
many decoys per input (n−1) the sender wants to include in the transaction, ad-
ditionalm·(n−1) inputs are selected. Each input contains a public key P j

i , which
was generated as a one-time payment address. The amount a each input holds
is stored in a Pedersen commitment Cj

i (a, b) with blinding factors b. The sender
only knows aj,in and bj,in and xj for the inputs (P j

π = xjG,C
j
π(aj,in, bj,in))

under its control. All real inputs make up one vector

{(P 1
π , C

1
π(a1,in, b1,in)), . . . , (P

m
π , Cm

π (am,in, bm,in)}

at the secret index π. The decoy vectors at i = 1, . . . , π − 1, π + 1, . . . , n are
assembled equally, with neither knowledge of the private keys for P j

i nor of the

blinding factors and amounts of the commitments Cj
i .

We introduce the colour property as an additional commitment in each
input. Colours are defined as scalars fi. Each input gets an additional com-
mitment F j

i to a colour. For the sender owned inputs, the colours fj,in and
blinding factors uj,in of the commitments F j

π(fj,in, uj,in) are known. An input
(P j

π , C
j
π(aj,in, bj,in), F

j
π(fj,in, uj,in)) is now composed of the recipient one-time

key and two commitments. The q outputs of a transaction are also represented as
a tuple of three elements (Pk, Ck(ak,out, bk,out), Fk(fout, uk,out)) for k = 1, . . . , q
with the blinding factors bk,out and uk,out randomly drawn and secret.
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Conservation. The sum of amounts of all inputs into a transaction must always
be greater or equal to the sum of all output amounts, so the plain-text equation
∑m

j=1
aj,in −

∑q

k=1
ak,out = 0 translates to a commitment equation

m
∑

j=1

Cj
i −

q
∑

k=1

Ck = Ci
0 (2)

resulting in a commitment Ci
0 to zero. For i = π in Eq. (2), the signer knows all

amounts aj,in and blinding factors bj,in, which make up the private key to Cπ
0 .

This conservation ensures, that no asset is created in a transaction.
To ensure, that the real inputs are all from the same colour, the colour

commitments F j
i are checked in pairs to the colour commitment of the first

output F1. Again we can use a commitment to zero F j
i − F1 = F i,j

0 , which
does not disclose the colour. Unlike the summation of the amounts, comparing
aggregate commitments utilising the homomorphic property is not secure and
could lead to the following attack. An attacker creates a transaction with two
input colours fin − ǫ and fin + ǫ and an output fout. If we only verify that
fin − ǫ + fin + ǫ = 2fout the inputs are not necessarily from the same colour.
This conservation rule only supports one colour per transaction. Transactions
with multiple colours involved, maintaining the signer ambiguity is supported
by an extended version of our scheme currently in development.

Signature. The n commitments from the amounts and n · m commitments
from the colour checks can now be signed by an MLSAG from Section 2.2. To
bind a zero commitment to the originating spend key, and to have independent
link tags, the public key is added to the commitment. As the sender knows the
private key xj to the spend key P j

π and the components of the commitments to
colour and value, it can still sign the sum of commitment and P j

π with xm+1+j =

xj + fj,in − f1,out. The following set of vectors is used as key input P j
i into the

ML.sign(m, P j
i , xj , Ij) algorithm with Ij from the ML.Keyselect algorithm:

P :=

[{

P 1
1 , . . . , P

m
1 ,

m
∑

j=1

(P j
1 + Cj

1)−
∑

k

Ck, P
1
1 + F 1

1 − F1, . . . , P
m
1 + Fm

1 − F1

}

,

. . . ,

{

P 1
π , . . . , P

m
π ,

m
∑

j=1

(P j
π + Cj

π)−
∑

k

Ck, P
1
π + F 1

π − F1, . . . , P
m
π + Fm

π − F1

}

,

. . . ,

{

P 1
n , . . . , P

m
n ,

m
∑

j=1

(P j
n + Cj

n)−
∑

k

Ck, P
1
n + F 1

n − F1, . . . , P
m
n + Fm

n − F1

}]

.

Output Proofs. The amounts are values modulus the curve order l, so overflows
can be used to create new assets in a transaction. To counter this, the ringCT
uses range proofs [2,5] to confine the output amounts to the interval [0, 264].
Our extension has to make sure, that all outputs are commitments to the same
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colour. We achieve this by appending q− 1 signatures for the zero commitments
F1 − Fk = F k

0 for k = 2, . . . , q.

Public Verification. The complete transaction with the references of the in-
puts and outputs and the ring signature σ is broadcast and anyone is able to ver-
ify the transaction and the conservation of assets. Therefore the vectors of public
keys P j

i are read from the referenced inputs together with the amount and colour
commitments. The points for checking the conservation are calculated. The
transaction is accepted if ML.Verify(σ,m, P j

i ) = 1 and ML.Link(σ, σ′) = 0
for all other transactions σ′.

4 Discussion

In this section we evaluate the theoretical impact of our extension and discuss
its implications on the privacy of the whole system.

Correctness. The correctness of the proposed scheme, is satisfied by the avail-
ability of a rightful owner of an output and it’s corresponding key to transfer
the funds of one colour to another address. This is given under the correctness
of the non-colour aware ringCT. The restriction of real in- and outputs being of
the same colour only separates the transactions into different asset types, but
within each of them, funds can be transferred.

Size and Performance Overhead. The MLSAG signature size increases sig-
nificantly compared to a RCTTypeFull transaction. The current MLSAG signa-
ture (Eq. (1)) requires (n(m+ 1) + 1 +m)32 + ǫ Bytes, with ǫ being the size of
variable length encoded positions of the ring members. In addition to this, the
q outputs require q(1 + 64 · 2 + 64)32 Bytes for the Borromean range proofs [5]
including signatures and commitments proving a range of 64 bit.

Our extension depends on longer vectors because of the colour equivalency
proofs. The signature size then increases by n · m additional random values
s1,m+2, . . . , s1,m+1+m, . . . , sn,m+2, . . . , sn,m+1+m to (n(m+1+m)+1+m)32+ǫ
Bytes. The range proofs for the amount stay exactly the same. To prove that
the colours of the outputs are all the same, we need additional q − 1 signatures
for pairwise commitments to zero.

The range proofs use most of the space of the current transactions, so that
our increase in signature size is quite negligible. Only for a high number of inputs,
the impact is significant. Comparing only the signature sizes, our new approach
requires approximately twice the space. With the introduction of bullet proofs [2]
the range proof size will no longer increase linearly, but logarithmically leading
to a greater influence of the colour overhead.
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Security Analysis. Our construction uses the MLSAG and Pedersen com-
mitments in a unmodified version as black-boxes and can therefore rely on the
guarantees provided by these primitives.

The addition of a token colour provides a second attribute with which trans-
actions can be related. In a transaction with multiple inputs, an attacker who
knows that referenced inputs have different colours can discard these from the
anonymity set. Assuming a worst-case uniform distribution over colours of trans-
actions the probability of selecting a complete decoy vector with the same colour
is 1

χm
and vanishing with the number of inputs m and a total of χ colours. For a

more likely distribution of transaction frequencies modelled by a power law, with
most outputs in the native colour, the probability to find a one-colour decoy is
higher. A Zipf distribution results in a probability of approximately one in each
20 decoy vectors having 2 equal colours for a transaction with two inputs and a
reasonable 200 colours in total.

Initial Colour Creation. The ability to transfer privacy aware coloured tokens
requires a token issuing protocol to begin with. A simple way is to allow an
additional output in a transaction granting the output address a defined number
of tokens in a new colour. With an open colour commitment, the transaction is
only valid, if the colour is new with respect to all previous colour initiation
transactions. Depending on the usage of the new token type, the amount can be
an open commitment, to publicly announce the total supply of the token, or, if
not needed, be confidential.

5 Related Work

Confidential Assets. Andrew Poelstra et al. [8] created a protocol to hide
transaction values and allow the transaction of multiple assets on the same block-
chain. They use Pedersen commitments to store the amount of each UTXO and
because of it’s homomorphic properties, can publicly verify the conservation. To
mark different assets, a asset tag in the form of a commitment to a curve point is
added to each output. These asset tags must be generated, such that no factor in
any pair of assets is known to anyone. By the discrete logarithm assumption it is
hard to verify that no such factors exist for newly introduced assets. While this
is no limitation of block-chains with a predefined number of different assets, the
dynamic addition of new asset types by untrusted participants can introduce
asset which might have a nontrivial factor to an existing one. Moreover their
scheme does not support sender set anonymity.

Hidden in Plain Sight: Transacting Privately on a Blockchain. Oleg
Andreev at Chain Inc. also proposed a multi asset transaction1 with the same
fundamental techniques as the confidential assets. They also represent different
assets as orthogonal curve points and need to verify that the factors between

1 https://blog.chain.com/hidden-in-plain-sight-transacting-privately-on-a-blockchain-835ab75c01cb

https://blog.chain.com/hidden-in-plain-sight-transacting-privately-on-a-blockchain-835ab75c01cb
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assets are not known to anyone. As the work before, sender anonymity can not
be satisfied by hiding the real transaction input in an anonymity set.

6 Conclusion

We introduced an extension to the ring confidential transaction to support mul-
tiple colours of tokens to coexist on one block-chain. The transaction is publicly
verifiable to transfer only assets in a single colour, without disclosing it. To
achieve a high grade of anonymity, the decoy inputs can be of any token colour.
Thereby, we allow for an easy issuance of privacy preserving tokens which benefit
from each other by disguising themselves with each other. On top, our approach
can use all the existing privacy preserving mechanisms in place, such as an
anonymous peer to peer network, to maintain the privacy of the participants.
Compared to contending solutions, we only require a small adaptation of an
existing protocol.

References

1. Alonso, K.M., Joancomart, J.H.: Monero-privacy in the blockchain
2. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:

Efficient range proofs for confidential transactions. Tech. rep., Cryptology ePrint
Archive, Report 2017/1066, 2017. https://eprint.iacr.org/2017/1066 (2017)

3. Fujisaki, E., Suzuki, K.: Traceable ring signature. In: International Workshop on
Public Key Cryptography. pp. 181–200. Springer (2007)

4. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature
for ad hoc groups. In: Australasian Conference on Information Security and Privacy.
pp. 325–335. Springer (2004)

5. Maxwell, G., Poelstra, A.: Borromean ring signatures (2015)
6. Noether, S., Mackenzie, A., et al.: Ring confidential transactions. Ledger 1, 1–18

(2016)
7. Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret

Sharing. In: CRYPTO’91. pp. 129–140 (1991)
8. Poelstra, A., Back, A., Friedenbach, M., Maxwell, G., Wuille, P.: Confidential assets.

In: Financial Cryptography Bitcoin Workshop. https://blockstream.com/bitcoin17-
final41.pdf (2017)

9. Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.:
Zerocash: Decentralized anonymous payments from bitcoin. In: Security and Privacy
(SP), 2014 IEEE Symposium on. pp. 459–474. IEEE (2014)


	Coloured Ring Confidential Transactions

