
Using Convolutional Neural Networks in Robots with

Limited Computational Resources: Detecting NAO

Robots while Playing Soccer

Nicolás Cruz, Kenzo Lobos-Tsunekawa, and Javier Ruiz-del-Solar

Advanced Mining Technology Center & Dept. of Elect. Eng., Universidad de Chile

{nicolas.cruz,kenzo.lobos,jruizd}@ing.uchile.cl

Abstract. The main goal of this paper is to analyze the general problem of

using Convolutional Neural Networks (CNNs) in robots with limited

computational capabilities, and to propose general design guidelines for their

use. In addition, two different CNN based NAO robot detectors that are able to

run in real-time while playing soccer are proposed. One of the detectors is

based on the XNOR-Net and the other on the SqueezeNet. Each detector is able

to process a robot object-proposal in ~1ms, with an average number of 1.5

proposals per frame obtained by the upper camera of the NAO. The obtained

detection rate is ~97%.

Keywords: Deep learning, Convolutional Neural Networks, Robot Detection

1 Introduction

Deep learning has allowed a paradigm shift in pattern recognition, from using hand-

crafted features together with statistical classifiers, to using general-purpose learning

procedures to learn data-driven representations, features, and classifiers together. The

application of this new paradigm has been particularly successful in computer vision,

in which the development of deep learning methods for vision applications has

become a hot research topic. This new paradigm has already attracted the attention of

the robot vision community. However, the question is whether or not new deep

learning solutions to computer vision and recognition problems can be directly

transferred to robot vision applications. We believe that this transfer is not

straightforward considering the multiple requirements of current deep learning

solutions in terms of memory and computational resources, which in many cases

include the use of GPUs. Furthermore, we believe that this transfer must consider that

robot vision applications have different requirements than standard computer vision

applications, such as real-time operation with limited on-board computational

resources, and the constraining observational conditions derived from the robot

geometry, limited camera resolution, and sensor/object relative pose.

One of the main application areas of deep learning in robot vision is object

detection and categorization. These are fundamental abilities in robotics, because they

enable a robot to execute tasks that require interaction with object instances in the

real-world. State-of-the-art methods used for object detection and categorization are

based on generating object proposals, and then classifying them using a

Convolutional Neural Network (CNN), enabling systems to detect thousands of

different object categories. But as already mentioned, one of the main challenges for

the application of CNNs for object detection and characterization in robotics is real-

time operation. On the one hand, obtaining the required object proposals for feeding a

CNN is not real-time in the general case, and on the other hand, general-purpose

object detection and categorization CNN based methods are not able to run in real-

time in most robotics platforms. These challenges can be addressed by using task-

dependent methods for generating few, fast and high quality proposals for a limited

number of possible object categories. These methods are based on using other

information sources for segmenting the objects (depth information, motion, color,

etc.), and/or by using non general-purpose, but object specific weak detectors for

generating the required proposals. In addition, fast and/or lightweight CNN

architectures can be used when dealing with a limited number of object categories.

Preliminary CNN based object detection systems have been already proposed in

the context of robotic soccer. In [1], a CNN system is proposed for detecting players

in RGB images. Player proposals are computed by using color-segmentation based

techniques. Then, a CNN is used for validating the player detections. Different

architectures with 3, 4, and 5 layers are explored, all of them using ReLU. In the

reported experiments, the 5-layer architecture is able to obtain 100% accuracy when

processing images at 11-19 fps on a NAO robot, when all non-related processes such

as self-localization, decision-making, and body control are disabled. In [2], a CNN-

based system for detecting balls inside an image is proposed. Two CNNs are used,

consisting of three shared convolutional layers, and two independent fully-connected

layers. Both CNNs are able to obtain a localization probability distribution for the ball

over the horizontal and vertical image axes respectively. Several nonlinearities were

tested, with the soft-sign activation function generating the best results. Processing

times in NAO platforms are not reported in that work. From the results reported in [1]

and [2], it can be concluded that these object detectors cannot be used in real-time by

a robot with limited computational resources (e.g. a NAO robot) while playing soccer,

without disturbing other fundamental processes (walk engine, self-localization, etc.).

In this context the main goal of this paper is to analyze the general problem of

using CNNs in robots with limited computational capabilities and to propose general

design guidelines for their use. In addition, two different CNN based NAO robot

detectors that are able to run in real-time while playing soccer are proposed. Each of

these detectors is able to analyze a robot object-proposal in ~1ms, and the average

number of proposals to analyze in the presented system is 1.5 per frame obtained by

the upper camera of the NAO. The obtained detection rate is ~97%.

2 Deep Learning in Robots with limited Computational

Resources

The use of deep learning in robot platforms with limited computational resources

requires to select fast and lightweight neural models, and to have a procedure for their

design and training. These two aspects are addressed in this section.

2.1 Neural Network Models

State-of-the-art computer vision systems based on CNNs require large memory and

computational resources, such as those provided by high-end GPUs. For this reason,

CNN-based methods are unable to run on devices with low resources, such as

smartphones or mobile robots, limiting their use in real-world applications. Thus, the

development of mechanisms that allow CNNs to work using less memory and fewer

computational resources, such as compression and quantization of the networks, is an

important research area.

Different approaches have been proposed for the compression and quantization of

CNNs. Among them, methods that compute the required convolutions using FFT

[16], methods that use sparse representation of the convolutions such as [17] and [18],

methods that compress the parameters of the network [19], and binary approximations

of the filters [5]. This last option has shown very promising results. In [5], two binary-

based network architectures are proposed: Binary-Weight-Networks and XNOR-

Networks. In Binary-Weight-Networks, the filters are approximated with binary

values in closed form, resulting in a 32x memory saving. In XNOR-Networks, both

the filters and the input of convolutional layers are binary, but non-binary non-

linearities like ReLU can still be used. This results in 58x faster convolutional

operations on a CPU, by using mostly XNOR and bit-counting operations. The

classification accuracy with a Binary-Weight-Network version of AlexNet is only

2.9% less than the full-precision AlexNet (in top-1 measure); while XNOR-Networks

have a larger, 12.4%, drop in accuracy. An alternative to compression and

quantization is to use networks with a low number of parameters in a non-standard

CNN structure, such as the case of SqueezeNet [3]. Vanilla SqueezeNet achieves

AlexNet accuracy using 50 times fewer parameters. This allows for more efficient

distributed training and feasible deployment in low-memory systems such as FPGA

and embedded systems such as robots. In this work, we select XNOR-Net and

SqueezeNet for implementing NAO robot detectors, and to validate the guidelines

being proposed.

2.2 Design and Training Guidelines

We propose general design guidelines for CNNs to achieve real-time operation and

still maintain acceptable performances. These guidelines consist on an initialization

step, which sets a starting point in the design process by selecting an existing state-of-

the-art base network, and by including the nature of the problem to be solved for

selecting the objects proposal method and size, and an iterative design step, in which

the base network is modified to achieve an optimal operating point under a Pareto

optimization criterion that takes into account inference time and the classification

performance.

Initialization

- Object Proposals Method Selection: A fast method for obtaining the object

proposals must be selected. This selection will depend on the nature of the problem

being solved, and on the available information sources (e.g., depth data obtained by a

range sensor). In problems with no additional information sources, color-based

proposals are a good alternative (e.g., in [12]).

- Base Network Selection: As base network a fast and/or lightweight neural

model, as the ones described in sub-section 2.1 must be selected. As a general

principle, networks already applied in similar problems are preferred.

- Image/Proposal Size Selection: The image/proposal size must be set accordingly

to the problem’s nature and complexity. Large image sizes can produce small or no

increases in classification performance, while increasing the inference times. The

image size must be small, but still large enough to capture the problem’s complexity.

For example, in face detection, an image/window size of 20x20 pixels is enough in

most state-of-the-art detection systems.

Sequential Iteration

A Pareto optimization criterion is needed to select among different network’s

configurations with different classification performances and inference times. The

design of this criterion must reflect the importance of the real-time needs of the

solution, and consider a threshold, i.e. a maximum allowed value, in the inference

time from which solutions are feasible. By using this criterion, the design process

iterates for finding the Pareto’s optimal number of layers and filters:

- Number of layers: Same as in the image size case, the needed number of layers

depends on the problem complexity. For some classification problems with a high

number of classes, a large number of layers is needed, while for two-class

classification, high performances can be obtaining with a small number of layers (e.g.

as small as 3). One should explore the trade-off produced with the number of layers,

but this selection must also consider the number of filters in each layer. In the early

stages of the optimization, the removal of layers can largely reduce the inference time

without hindering the network’s accuracy.

- Number of filters: The number of filters in each convolutional layer is the last

parameter to be set, since it involves a high number of correlated parameters. The

variations in the number of filters must be done iteratively with slight changes in each

step, along the different layers, to evaluate small variations in the Pareto criterion.

The proposed guidelines are general, and adaptations must be done when applying

them to specific deep models and problems. Examples of the required adaptations are

presented in Section 3.1 and 3.2 for the SqueezeNet and XNOR-Net, respectively.

3 Case Study: Real-time NAO Detection while Playing Soccer

The detection of other robots is a critical task in robotic soccer, since it enables

players to perceive both teammates and opponents. In order to detect NAO robots in

real-time while playing soccer, we propose the use of CNNs as image classifiers,

turning the robot detection problem into a binary classification task, with a focus on

real-time, in-game use. Under this modeling, the CNN based detector will be fed by

object proposals obtained using a fast robot detector (e.g. the one proposed in [12]).

Since the main limitation for the use of CNNs in robotic applications is the

memory consumption and the execution time, we select two state-of-the-art CNNs to

address the NAO robot detection problem: SqueezeNet [3], which generates

lightweight models, and XNOR-Nets [5], which produces fast convolutions. NAO

robot detectors using each of those networks are designed, implemented and

validated. In both cases, the proposed design guidelines are followed, using the same

Pareto criterion, with a maximum processing time of 2ms to ensure real-time

operation while playing soccer.

One important decision when designing and training deep learning systems is the

learning framework to be used. We analyzed the use of three frameworks with focus

on deployment in embedded systems: Caffe [13], TensorFlow [14], and Darknet [15].

Even though Caffe is implemented in C++, its many dependencies make the

compatibility in 32-bit systems highly difficult. Tensorflow is also written in C++ (the

computational core), but it offers a limited C++ API. Hence, we chose Darknet, which

is a small C library with not many dependencies, which allows an easy deployment in

the NAO, and the implementation of state-of-the-art algorithms [5].

For the training and validation of the proposed networks we use the NAO robot

database published in [1], which includes images taken in various game situations and

under different illumination conditions.

3.1 Detection of NAO Robots using SqueezeNet

In the context of implementing deep neural networks in systems with limited

hardware, such as the NAO robot, SqueezeNet [4] appears as a natural candidate.

First of all, the small model size allows for network deployment in embedded systems

without requiring large portions of the memory to store the network parameters.

Second, the reduced number of parameters can lead to faster inference times, which is

fundamental for the real-time operation of the network.

These two fundamental advantages of the SqueezeNet arise from what the authors

call a fire module (see Figure 1 (a)). The fire module is composed of three main

stages. First, a squeeze layer composed of 1x1 filters, followed by an expand layer

composed of 1x1 and 3x3 filters. Finally, the outputs of the expand layer are

concatenated to form the final output of the fire module.

The practice of using filters of different sizes and then concatenating their outputs

is not new, and has been used in several networks, most notably in GoogLeNet [6],

with its inception module (see Figure 1 (c)). This module is based on the idea that

sparse neural networks are less prone to overfitting due to the reduced number of

parameters and are theoretically less computationally expensive. The problem with

creating a sparse neural network arises due to the inefficiency of sparse data

structures. This was overcome in GoogLeNet by approximating local sparse structures

with dense components as suggested in [7], giving birth to the naïve inception

module. This module uses a concatenation of 1x1, 3x3, and 5x5 filters; 1x1 filters are

used to detect correlation in certain clusters between channels, while the larger 3x3

and 5x5 filters detect more spatially spread out of the clusters. Since an

approximation of sparseness is the goal, ReLu activation functions are used to set

most parameters to zero after training. The same principle is at the core of the fire

module, which concatenates the outputs of 1x1 and 3x3 filters, but eliminating the

expensive 5x5 filter. While concatenating the results of several filter’s sizes boost

performance, it has a serious drawback: large convolutions are computationally

expensive if they are placed after a layer that outputs a large number of features. For

that reason both, the fire module and the inception module, use 1x1 filters to reduce

the number of features before the expensive large convolutions. The 1x1 filter was

introduced in [9] as a way to combine features across channels after convolutions,

while using very few parameters.

(a) (b)

(c)

Figure 1. (a) Fire module from SquezeNet [3]. (b) Extended fire module (proposed here). (c)

Inception module from GoogLeNet [6].

The main difference between the inception module and the fire module

approaches to dimension reduction lies in the structure. The inception module has

each of the 1x1 filter banks feeding only one of the large convolutional filters of the

following layer, so there are as many 1x1 filter banks in the feature reduction layer as

there are large convolutions in the next layer. However, if we assume a high

correlation between the outputs of each of the 1x1 filter banks in the feature reduction

layer, all filters in this layer could be condensed into only one 1x1 filter bank that

feeds all the filters in the next layer. This approach was taken by the creators of the

SqueezeNet. In our experiments, we found that adding a 5x5 filter bank to the expand

layer of the fire module, in what we called an extended fire module (proposed here),

can boost performance. The extended fire module was developed for this paper, and is

shown in Figure 1 (b). In this modified structure one 1x1 filter bank of the squeeze

layer feeds the 1x1, 3x3 and 5x5 filters, further confirming the idea that the 1x1 filter

banks of the inception module are heavily correlated in some cases, and can be

compressed in just 1 bank.

In order to adapt the SqueezeNet to embedded systems some changes need to be

made to the vanilla architecture of SqueezeNet, in particular to the depth of the

network and the number of filters in each layer. We recommend resizing the network

in order to achieve optimal inference time by following the guidelines postulated in

Section 2. However, the size reduction usually comes with reduced network accuracy.

To solve this problem, we propose to use the following two strategies. First, in case of

reduced accuracy due to network resizing, we propose replacing the ReLu activation

function with a PreLu activation function in early layers as suggested in [10]. If this

approach fails to deliver extra accuracy, then replacing standard fire modules with

extended fire modules can increase the quality of the network. The overall inference

time can be further diminished without reducing accuracy by implementing all

maxpool operations using non-overlapping windows as suggested in [11]. The

proposed iterative algorithm to produce an optimal network is presented in Figure 2.

reduce image size

make maxpool windows non-overlapping

while network can be improved according to a Pareto criteria do

 resize the network in term of layers and filters following the guidelines in Section 2

 if the accuracy is lower than desired do

 replace the ReLu activation functions of initial layers by PreLu

 end if

 if the accuracy is lower than desired and using PreLu doesn’t improve accuracy do

 replace fire modules by extended fire modules

 end if

end while

end optimization
Figure 2. Guidelines for real-time SqueezeNet implementation in embedded systems.

Table 1 presents execution times and classification performances achieved by

different variants of the Squeeze network obtained by following the design procedure

shown in Figure 2. First, the SqueezeNet, designed originally for the ImageNet

database, was modified (NAO adapted SqueezeNet) to provide the correct number of

output classes, and the size of the input was changed to match the size of the used

region proposals. This network was further changed by reducing the number of filters

and layers according to the guidelines in Section 2, substituting ReLu with PreLu

activation function in the first convolutional layer of the network, and using maxpool

operations with non-overlapping windows, giving birth to the miniSqueezeNet2

variant. For miniSqueezeNet3 several image input sizes were tested and 24x24 was

found to have the right dimensions to achieve low inference time while preserving

accuracy. To further reduce inference time, the number of filters was also diminished.

Finally, in the miniSqueezeNet4 variant the number of layers and filters was further

reduced, and the remaining fire module was replaced by the newly developed

extended fire module. The structure of miniSqueezeNet4 is shown in Figure 3.

Interestingly as the inference time and number of free parameters decreases the

network becomes more accurate. It is important to note that simply reducing the

number of filters and layers is not a good method to achieve real-time inference, since

following this simple approach will result in very poor network accuracy. Instead, by

methodically and iteratively applying the proposed guidelines and testing the network,

one can achieve very low inference time while retaining or even increasing accuracy.

Another factor to take into account is that the network’s size reduction can lead to a

higher accuracy for small datasets due to the overfitting reduction, given the smaller

number of tunable parameters. In the context of the RoboCup this characteristic

becomes extremely relevant since datasets are small, because the building process is

slow.

Table 1. Inference times and classification results for different SqueezeNet networks.

Name of the network Inference time on the NAO [ms] Classification Rate [%]

NAO adapted SqueezeNet 68.4 51.25

miniSqueezeNet2 3.5 92.5

miniSqueezeNet3 1.55 96.33

miniSqueezeNet4 1.05 98.30

Figure 3. Diagram of the miniSqueezeNet4 network designed in Section 3.1.

3.2 Detection of NAO Robots using XNOR-Net

Since the use of deep learning approaches in robotic applications becomes limited by

memory consumption and processing time, many studies have been conducted trying

to compress models or approximate them using various techniques. In [4] it is stated

that 70-90% of the execution time of a typical convolutional network is used in the

convolution layers, so it is natural to focus the study in how to optimize or

approximate those layers. From the many options that have been proposed in the last

few years, XNOR-Nets [5] becomes an attractive option due to its claim to achieve a

58x speedup in convolutional operations. This speedup is produced since both the

input representation in each layer, and the associated weights, are binarized. Hence, a

single binary operation can replace up to 64 floating point operation (in a 64-bit

architecture). However, since not all operations are binary, the theoretical speedup is

around 62x, and in [5] a practical 58x speedup is achieved.

However, even if these results are promising, implementations on embedded

systems need to consider the target architecture, which affects directly the speedup

obtained by the binary convolutions. For example, in CPU implementations, two

critical aspects are the word length and the available instruction set. In the specific

case of the NAO, which uses an Intel Atom Z530, the word length is 32-bits, which

halves the theoretical speedup, and the instruction set does not support hardware bit-

counting operations, which are needed for an optimal implementation, since counting

bits is an important factor in XNOR layers, as they replace sums in convolutions.

Since the authors of [5] do not release their optimized CPU version of XNOR-

Nets, we use our own, by implementing the binary counterparts of the popular gemm

and im2col algorithms, obtaining an asymptotic speedup of 15x in the convolutional

operations, with the bottleneck being the bit counting operations, which are computed

by software algorithms.

The design of convolutional networks using XNOR layers for specific, real-time

applications must follow the design procedure explained in Section 2. However, since

the XNOR layers are approximations of normal convolutions, in each design step,

both the XNOR and the full precision versions of the used CNN architecture must be

considered, in order to perform the next step, since some architectures take more

advantage than others of the binarization. Furthermore, it is important to remark that

even though XNOR layers can substitute any convolutional layers, it is not convenient

to replace the first and the last convolution layers, since binarization in those layers

produces high information losses.

To validate the proposed design methodology for the specific XNOR-Net

architecture, we consider as base networks the following three, as well as their

binarized versions: AlexNet, the convolutional network proposed in [15] for the

CIFAR-10 database (here called Darknet-CIFAR10), and another network for the

CIFAR-10 database, also proposed in [15] (here called Darknet-CIFAR10-v2). The

performances of these three base networks, and their binarized counterparts, are

shown in Table 2. We chose Darknet-CIFAR10-v2 for applying our design guidelines,

since it achieves high classification performance, using much less computation

resources than the other two networks. As a result of applying the proposed design

guidelines, the miniDarknet-CIFAR10 network shown in Figure 4 is obtained, which

achieves a slightly lower classification performance than Darknet-CIFAR10-v2, but

has an inference times of less than one millisecond (see last two rows in Table 2).

Figure 4. Diagram of the miniDarknet-CIFAR10 network designed in Section 3.2.

Table 2. Inference times and classification results for XNOR-Networks

Name of the network Inference time on the

NAO [ms]

Classification

Performance [%]

Alexnet Full precision 7400 97.2

XNOR 1500 97.8

Darknet-CIFAR10 Full precision 4400 99.2

XNOR 400 93.8

Darknet-CIFAR10-

v2

Full precision 48 98.6

XNOR 11.5 98.1

miniDarknet-

CIFAR10

Full precision 0.9 97.6

XNOR 0.95 96.6

3.3 Robot Detection while Playing Soccer

The two deep learning based detectors described in the two former sub-sections need

to be fed using region proposals. As region proposals generator we choose the

algorithm described in [12]. This algorithm scans the NAO image using vertical

scanlines, where non-green spots are detected and merged into a bounding-box, which

constitutes a region proposal. This algorithm runs in less than 2ms in the NAO [12],

and although it shows excellent results on simulated environments, it fails under

wrong color calibration and challenging light conditions, generating false detections,

which is why a further classification step is needed.

The computation time of the whole NAO robot detection system (proposal

generation + deep based robot detector) is calculated by adding the execution time of

the region proposal algorithm, and the convolutional network inference time

multiplied by the expected number of proposals. To estimate the expected number of

proposals, several realistic game simulations where run using the SimRobot simulator

[12], and then the number of possible robot proposals was calculated for each of the

cameras. The final execution times are presented in Table 3. It is important to note

that we use the average number of proposals in the upper camera, since the lower

camera rarely finds a robot proposal.
Table 3. Execution time of the robot detection system.

Regions proposal time 0.85 [ms]

Selected network inference time (XNOR-Net) 0.95 [ms]

Average number of proposals (in the upper NAO camera) 1.5

Average total detection time 2.275 [ms]

3.4 Discussion

The XNOR-Net and SqueezeNet design methodologies have been validated,

obtaining inference times and classification performances that allow deployment in

real robotic platforms with limited computational resources, such as the NAO robot.

The main common principles derived from the proposed methodologies are:

1. To select a base network taking as starting point fast and/or lightweight deep

models used in problems of similar complexity - XNOR-Net and SqueezeNet

seems to be good alternatives for object detection problems of a similar

complexity than the robot detection problem described here.

2. To select an image/proposal size according to the problem’s complexity (24x24

pixels was the choice in the described application).

3. To follow an iterative design process by reducing the number of layers and

filters, following a Pareto optimization criterion that considers classification

performance and inference time.

In the described NAO robot detection problem, the best detectors for each network

type (XNOR-Net and SqueezeNet) are comparable, obtaining a very similar

performance. While the XNOR-Net based detector achieves a marginally lower

inference time (0.95 ms against 1.05 ms), the SqueezeNet based detector gives a

better classification performance (98.30% against 96.6%). We also validate the

hypothesis that hybrid systems that use handcrafted region proposals that feed CNN

classifiers are a competitive choice against end-to-end methods, which integrate

proposal generation and classification in a single network such as Faster R-CNN,

since the use of the first kind of methods (handcrafted proposals + deep networks)

make possible the application of the final detector in real-time.

It must be noted that while the reported network inference times are the ones of a

network running in a real NAO robot, the reported classification performances

correspond to the test results when using the SPQR database [1]. The performance

using this database may differ from the performance in real-world conditions, since

the data distribution in this database might be different from the one expected in real

games.

4 Conclusions

In this paper two deep neural networks suited for deployment in embedded systems

were analyzed and validated. The first one, XNOR consists on the binarization of a

CNN network, while the second one, SqueezeNet, is based on a lightweight

architecture with a reduced number of parameters. Both networks were used for the

detection of NAO robots in the context of robotic soccer, and obtained state-of-the-art

results (~97% detection rate), while having very low computational cost (~1ms for

analyzing each robot proposal, with an average of 1.5 proposal per image).

With this work, we show that using deep learning in NAO robots is indeed

feasible, and that it is possible to achieve state-of-the-art robot detection while playing

soccer. Similar neural network structures to the ones proposed in this paper can be

used to perform other detections tasks, such as ball detection or goal post detection in

this same context. Moreover, since the methodologies presented in this work to

achieve real-time capabilities are generic, it is possible to implement the same

strategies in applications with similar hardware restrictions such as smartphones, x-

rotors and low-end robot systems.

Acknowledgements

This work was partially funded by FONDECYT Project 1161500.

REFERENCES

1. Albani, D., Youssef, A., Suriani, V., Nardi, D., Bloisi, D.D.: A Deep Learning Approach

for Object Recognition with NAO Soccer Robots. RoboCup Int. Symposium. July 2016

2. Speck, D., Barros, P., Weber, C., Wermter, S.: Ball Localization for Robocup Soccer using

Convolutional Neural Networks. RoboCup Int. Symposium. July 2016

3. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.:

Squeezenet: Alexnet-level accuracy with 50x fewer parameters and<1mb modelsize.

CoRR (2016), http://arxiv.org/abs/1602.07360

4. Hadjis, S., Abuzaid, F., Zhang, C., Ré, C.: Caffe Con Troll: Shallow Ideas to Speed Up

Deep Learning. In: Proceedings of the Fourth Workshop on Data Analytics in the Cloud

5. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet Classification

Using Binary Convolutional Neural Networks, ECCV, 2016

6. Çatalyürek, U.V., Aykanat, C., Uçar, B.: On two-dimensional sparse matrix partitioning:

Models, methods, and a recipe. SIAM J. Sci. Comput. 32(2), 656–683(Feb 2010)

7. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,

V., Rabinovich, A.: Going deeper with convolutions. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015.

8. Lin, M., Chen, Q., Yan, S.: Network in network. CoRR (2013),

http://arxiv.org/abs/1312.4400

9. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: Enet: A deep neural network

architecture for real-time semantic segmentation. CoRR (2016),

http://arxiv.org/abs/1606.02147

10. Scherer, D., Müller, A., Behnke, S.: Evaluation of Pooling Operations in

Convolutional Architectures for Object Recognition, pp. 92–101. SpringerBerlin

Heidelberg, Berlin, Heidelberg (2010)

11. Röfer, T., Laue, T., Kuball, J., Lübken, A., Maaβ, F., Müller, J., Post, L., Richter-Klug, J.,

Schulz, P., Stolpmann, A., Stöwing, A., Thielke, F.: B-Human team report and code

release 2016 (2016), only available online: http://www.b-

human.de/downloads/publications/2016/coderelease2016.pdf

12. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S.,

Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093 (2014)

13. Abadi, M., Agarwal, A., et al.: TensorFlow: Large-scale machine learning on

heterogeneous systems (2015), http://tensorflow.org/, software available from

tensorflow.org

14. Redmon, J.: Darknet: Open source neural networks in c. http://pjreddie.com/ darknet/

(2013–2016)

15. Mathieu, M., Henaff, M., LeCun, Y.: Fast training of convolutional networks through ffts,

arXiv preprint arXiv:1312.5851, 2013.

16. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up Convolutional Neural Networks

with Low Rank Expansions. arXiv:1405.3866 [cs.CV]

17. Liu, B., Wang, M., Foroosh, H., Tappen, M., Penksy, M.: Sparse Convolutional Neural

Networks, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

Boston, MA, 2015, pp. 806-814.

18. Han, S., Mao, H., Dally, W.J.: Deep Compression: Compressing Deep Neural Networks

with Pruning, Trained Quantization and Huffman Coding (ICLR'16, best paper award)

